As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.
The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will collaboratively design, test and study effective and efficient ways to develop embedded assessments (EAs) of citizen science (CS) volunteer scientific inquiry skills in order to better understand the impact of these CS experiences on volunteer scientific inquiry abilities. EAs are assessment activities that are integrated into the learning experience and allow learners to demonstrate their competencies in an unobtrusive way. The acquisition of scientific inquiry skills is an essential, even defining, characteristic of citizen science experiences that has a direct influence on data quality. Methods for assessing the direct impact of CS on volunteers' scientific inquiry skills are limited. The project will result in EA measures designed for use by diverse CS projects, strategies that CS projects can use to develop EA assessment tools, and research findings that document opportunities, supports and barriers of this innovative method across a range of CS contexts. Findings and initial resources will be shared with the broad array of stakeholders in CS through conferences, workshops, peer-reviewed publication, community websites and other relevant venues. The results of this work also have the potential to generalize to other informal science learning experiences that engage the public in science The project will address two research questions: (1) What processes are useful for developing broadly applicable EA methods or measures? and (2) What can we learn about gains in volunteers' scientific inquiry skills when citizen science organizations use EA? These will be addressed through design-based research focused on two streamlining strategies. For the reframing data validation strategy, six leaders from five established citizen science projects will conduct secondary analyses of their existing databases to uncover the skill gains of CS volunteers that are currently unexplored in their data. For the common measure strategy, ten CS projects will collaborate to create and test common EA measures of select identification-based skills. Data will be gathered through meeting notes, participant interviews and action plans, and volunteer skill gains to capture process and products of each strategy. Data will be analyzed using grounded theory, multiple process techniques, multilevel models, and repeated-measures analysis of variance. The design-based-research framework will significantly expand project impacts by jump-starting evaluation of the participating CS projects and by producing initial resources for two distinct EA strategies that have the potential to dramatically alter practice and impact citizen science efforts to ultimately enable more people to learn by contributing to the science endeavor. The project will directly equip the 15 participating citizen-science projects with authentic performance tools to assess the quality of their programing, which will expand their understanding of CS volunteer skills and help them better recruit and support their varied audiences (including rural, low-income and tribal communities).
How do afterschool programs view their local public libraries? Are they working with them, and in what ways? These are the questions that the Afterschool Alliance, along with its partners at the Space Science Institute’s National Center for Interactive Learning (NCIL) and the American Library Association, wanted to answer. Overall, our goal is to build bridges between the afterschool and library fields, so that both can share knowledge and resources to better serve our youth. While our work together has primarily focused on science, technology, engineering, and math (STEM) education through
The Water for Life project has been an effective, and in some cases an essential vehicle for addressing issues around water quality and retention in island settings where water security is an on-going challenge. The focus on local partnerships was a highly valued attribute of the WfL project, and the informal science and conservation education resources produced and disseminated by the project have had a significant impact on these populations
With support from the Institute of Museum and Library Services, The Wild Center (TWC) engaged Insight Evaluation Services (IES) to assess the impact of specific outreach activities of the Northern New York Maple Project between September 2013 and September 2015. Data for this two-year evaluation study were collected via in-depth telephone interviews conducted with a total of 25 participants, including 16 Tupper Tappers (Tupper Lake area residents who engaged in backyard tapping to provide sap for syrup production at the museum through the Community Maple Project), four local school teachers
ISE Research: Contextualizing Science Learning and Motivation in Rural and Indigenous Adolescents through Mapping Sustainable Practices is a three-year interdisciplinary research project. Researchers from the University of New Hampshire will investigate impacts of contextualization on science learning, motivation, and positive attitudes toward science of early adolescents from rural and Indigenous populations. The project will yield research findings that can help identify contextualization as a means to engage rural and Indigenous adolescents. The project team uses a systematic approach that incorporates mixed methods of data collection and analysis to learn more about how culture and community (contextualization) impact STEM learning. They hypothesize that contextualizing science learning to culture and community will enhance rural majority and Indigenous early adolescents' science knowledge and positively strengthen motivation and attitudes toward science. Local community and Indigenous group members provide expertise that contributes to the design of the research and the related curriculum as well as the interpretation of the findings. This project will contribute to what we know about how underserved and underrepresented youth engage in STEM learning in relation to their world views. This work will help advance the informal science education field in terms of providing rigorous evidence that can inform theory on learning and motivation among disadvantaged STEM learners as well as address practical issues around the design of STEM programs for rural and Indigenous groups.
DATE:
-
TEAM MEMBERS:
Eleanor AbramsThomas KellyLisa TownsonRuth VarnerMichael Middleton
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
This paper describes a complex process being undertaken by a major Canadian institution, the Manitoba Museum of Man and Nature. The evaluation process is systematic, multi-faceted and demonstrates the fruitful interaction between evaluation and gallery development. The front-end phase is the focus of the paper. Discussion concentrates on the elements of the process which are unique to the Canadian experience, specifically the whole community aspect of this process (wherein input was from sources distant from the physical setting of the institution), and the mix of novel and "traditional"
This article is a report of the impact assessment of two outreach programs to primary schools run by the Botswana National Museum. The oldest of the programs, Zebra-on-Wheels was officially launched in 1980 and has involved all the primary schools in the country at least twice. The study aimed to establish the impact of the two programs and make recommendations for possible improvements. Thirty-eight schools throughout Botswana participated in the study. Teachers in these schools were interviewed and classroom observation sessions were carried out. Teachers’ observations about the two programs
In this article, Marilyn G. Hood of Hood Associates discusses a visitor study of the Holden Arboretum in rural Mentor, Ohio. The year-long study helped arboretum staff and trustees learn how the institution might more effectively serve its audience, which they suspected differ from season to season.
In this paper, Volker Kirchberg of the University of Lueneburg and Basica Research Institute analyses catchment areas to better understand museums' greater impacts. The author defines these areas as not only a function of distance of the the potential visitors' residence to the venue but also a function of socio-demographic structures of residential areas.
In August 2009, the Program Evaluation and Research Group (PERG) at Lesley University contracted with the project's PI at the University of New Hampshire (UNH) to evaluate My Dome: Defining the Computational and Cognitive Potential of Real Time Interactive Simulations in an Immersive Dome Environment, an NSF funded grant. The project focuses on creating interactive experiences in immersive virtual environments, and builds off previous work the PI and co PIs have done in developing films and immersive experiences in domes and traveling domes. The project includes staff from the Carnegie Museum