Skip to main content

Community Repository Search Results

resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
DATE:
TEAM MEMBERS: Ross Higashi
resource research Media and Technology
This poster was presented at the 2021 National Science Foundation (NSF) Advancing Informal STEM Learning (AISL) Awardee Meeting. The project’s goal is to create media-rich citizen science experiences for girls, particularly girls of color and/or from rural areas, which broaden their STEM participation, build positive STEM identity and increase understanding of scientific concepts, while leveraging the citizen science endeavors occurring at 16 diverse National Parks.
DATE:
resource project Public Programs
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.

Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.

This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Patricia Townsend Roslynn McCann Melissa Kreye Arthur Nash
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource project Public Programs
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.

The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Ogan Erin Walker Kimberly Scott