The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
This is the final report from the external evaluator of the project that created MedLab, an interactive learning experiences for Chicago area middle and high school students. This external evaluator's final report summarizes the outcomes and impacts of the five-year (2012-2017) funding compared to project objectives. The aim of the project was to use in person and online curricula, including a humanoid patient simulator (iStan®), to build interest in and knowledge of health sciences and health careers, with a particular focus on local community health concerns. An additional goal was to
DATE:
TEAM MEMBERS:
Christina Shane-SimpsonJohn FraserSusan HannahKin KongPatricia WardRabiah Mayas
Constraints on learning, rather than being unique to evolutionarily privileged domains, may operate in nonprivileged domains as well. Understanding of the goals that strategies must meet seems to play an especially important role in these domains in constraining the strategies even before they use them. THe presente experiments showed that children can use their conceptual understanding to accurately evaluate strategies that they not only do not yet use but hat are more conceptually advanced than the strategies they do not use. In Experiment 1, 5-year-olds who did not yet use the min strategy
The Maryland Science Center has received a SEPA grant to develop an exhibition, intern program and web site focusing on cell biology and stem cell research. The working title of the exhibition is Cellular Universe. The exhibit is intended to serve the following audiences: Families with children age nine and older; School groups (grades four and up); Adults; 9th grade underserved high school students in three local schools and/or community centers. Topics the exhibit will treat include: Structure and function of cells; Stem cells and their potential, the controversy surrounding stem cell
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
The Miami Museum of Science, in collaboration with University of Miami's (UM) School of Medicine, is requesting a Phase II grant to support national replication of the Biomedical Training, Research and College Prep (BioTrac) Project. The goal of Phase I, now in its final year of funding, was to develop a replicable model aimed at increasing the numbers of underserved students entering the biomedical research pipeline. Phase I focused on priority areas under Healthy People 2000 reflecting health issues of interest to the community as well as resources available through UM's Jackson Memorial Medical Center. Comprising hands-on project-based programming, career awareness activities, college prep, research internships and college residential experiences, the project has served 98 students to date, of whom 88% are low-income and 96% reside in homes where English is the second language. Of the 43 seniors who have graduated to date, 42 are enrolled in post-secondary studies. Of these, 52% have chosen a science-related major, and of these, 73% have chosen a biomedical course of study. Under the proposed Phase II project, the useum will establish BioTrac as a national demonstration site, extending BioTrac strategies and materials to formal and informal science institutions (ISis) through site-based institutes, distance-learning opportunities and professional conferences and publications. Continued delivery of BioTrac programming at the demonstration site will also further increase the number of underrepresented students entering the biomedical research pipeline, and allow for further programming aimed at increasing public understanding of Healthy People 2010 priorities and biomedical research. The museum will target ISis with youth programs to attend a three-day replication institute, reaching a minimum of 30 ISis during the grant. Through participation in national conferences and professional development sponsored by the Association of Science-Technology Centers, representng 340 ISis, the model has the capacity to impact small, medium, and large science centers nationwide. The model will also be adaptable for use by the other 123 Upward Bound Math & Science Centers engaged in science enrichment programming for underserved youth. Finally, elements of the model will be suitable for extracurricular school-based science clubs and high school magnet programs focused on biomedicine, further extending the potential impact of the model to school districts nationwide.
BioTrac will expand opportunities in biomedicine for low-income, first-generation college-bound high school students, increasing the number interested in, and prepared to enter, the biomedical research pipeline. Specific objectives are to: (1) Raise awareness of careers in biomedicine and provide students with real-world biomedical research experiences; (2) Increase awareness of requirements and opportunities for related post-secondary study; (3) Increase public understanding of the importance and diversity of biomedical research; and (4) Disseminate project outcomes. In collaboration with the University of Miami (UM) and Miami-Dade County Public Schools (M-DCPS), the Museum will design and implement a replicable model program exposing students to research on selected priority areas outlined in the Public Health Service's Healthy People 2000 agenda. The program will focus on areas with significant local research capacity, ties to local growth industries, and relevance to Miami-Dade's diverse communities. Students will investigate each area through hands-on lab activities, on-line research, site visits to research facilities, and through interactions with research scientists at UM's nationally renowned Jackson Memorial Medical Complex. Students will work in teams to conduct community-focused research on aspects of each priority area, using technology skills acquired as part of the program to document their research through digital video, PowerPoint presentations, and development of a BioTrac website. Students will present their research at annual symposia held at the Museum. They will also serve as science explainers in the Museum's galleries, interpreting biomedical-related exhibits to the general public. During the summer before 12th grade, students will attend residential programs at University of Florida and Florida A&M University, gaining exposure to post-secondary programs leading to careers in biomedical research. Students in 11th and 12th grade will also be encouraged to participate in M-DCPS's Advanced Academic Internship Program, gaining up to three honors credits for work in institutions engaged in biomedical research. Following 12th grade, prior to beginning college, students will be placed in an eight-week summer internships at UM labs engaged in a broad spectrum of biomedical research. The Museum will disseminate students' research experiences and project findings through an BioTrac web page, ASTC and Upward Bound conferences and networks, and Museum and UM publications.
The “Being Me” program was developed to bring the educational process to life through hands-on learning that promotes children’s awareness of health issues and encourages scientific inquiry in an art-focused curriculum supporting National Science Content Standards (now Next Generation Science Standards, or NGSS). In 2009, the “Being Me” partnership – Children’s National Medical Center (CNMC), the National Children’s Museum (NCM), and George Washington University’s Graduate School of Education and Human Development (GW) – received a five-year National Institutes of Health Sciences Education
DATE:
TEAM MEMBERS:
Children’s Research InstituteJohn Fraser