This report summarizes the ideas and conversations of the CAISE Broadening Participation Task Force, which was led by the authors, along with James Bell, Principal Investigator and project director of CAISE (see informalscience.org/bp-task-force). The task force was instrumental in identifying key ideas and challenges to the field, providing edits and input into the report, developing and drafting the associated practice briefs, and piloting the materials.
Across the nation, many are undertaking efforts to significantly transform who participates in science, technology, engineering, and
Since 1992, the WSU Math Corps, a combined mathematics and mentoring program, has worked to make a difference in the lives of Detroit’s children—providing them with the love and support that all kids need in the moment, while empowering them with the kinds of educational opportunities and sense of purpose, that hold the promise of good lives for themselves and a better world for all.
DATE:
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research brief highlights findings from the proof of concept pilot year of the Child Trends News Service project. It explores what we have learned regarding best practices for communicating with and engaging Latino parents through short messages on research-informed parenting practices. The findings are grounded in research that substantiates the need to amplify access to child development research, particularly among low-income Latino families; and in communication science research that demonstrates the value of the news media as an information source for child development research.
DATE:
TEAM MEMBERS:
Alicia TorresSelma CaalLuz GuerraAngela Rojas
Out-of-school settings promise to broaden participation in science to groups that are often left out of school-based opportunities. Increasing such involvement is premised on the notion that science is intricately tied to “the social, material, and personal well-being” of individuals, groups, and nations—indicators and aspirations that are deeply linked with understandings of equity, justice, and democracy. In this essay, the authors argue that dehistoricized and depoliticized meanings of equity, and the accompanying assumptions and goals of equity-oriented research and practice, threaten to
This article explores science communication from the perspective of those most at risk of exclusion, drawing on ethnographic fieldwork. I conducted five focus groups and 32 interviews with participants from low-income, minority ethnic backgrounds. Using theories of social reproduction and social justice, I argue that participation in science communication is marked by structural inequalities (particularly ethnicity and class) in two ways. First, participants’ involvement in science communication practices was narrow (limited to science media consumption). Second, their experiences of exclusion
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will collaboratively design, test and study effective and efficient ways to develop embedded assessments (EAs) of citizen science (CS) volunteer scientific inquiry skills in order to better understand the impact of these CS experiences on volunteer scientific inquiry abilities. EAs are assessment activities that are integrated into the learning experience and allow learners to demonstrate their competencies in an unobtrusive way. The acquisition of scientific inquiry skills is an essential, even defining, characteristic of citizen science experiences that has a direct influence on data quality. Methods for assessing the direct impact of CS on volunteers' scientific inquiry skills are limited. The project will result in EA measures designed for use by diverse CS projects, strategies that CS projects can use to develop EA assessment tools, and research findings that document opportunities, supports and barriers of this innovative method across a range of CS contexts. Findings and initial resources will be shared with the broad array of stakeholders in CS through conferences, workshops, peer-reviewed publication, community websites and other relevant venues. The results of this work also have the potential to generalize to other informal science learning experiences that engage the public in science The project will address two research questions: (1) What processes are useful for developing broadly applicable EA methods or measures? and (2) What can we learn about gains in volunteers' scientific inquiry skills when citizen science organizations use EA? These will be addressed through design-based research focused on two streamlining strategies. For the reframing data validation strategy, six leaders from five established citizen science projects will conduct secondary analyses of their existing databases to uncover the skill gains of CS volunteers that are currently unexplored in their data. For the common measure strategy, ten CS projects will collaborate to create and test common EA measures of select identification-based skills. Data will be gathered through meeting notes, participant interviews and action plans, and volunteer skill gains to capture process and products of each strategy. Data will be analyzed using grounded theory, multiple process techniques, multilevel models, and repeated-measures analysis of variance. The design-based-research framework will significantly expand project impacts by jump-starting evaluation of the participating CS projects and by producing initial resources for two distinct EA strategies that have the potential to dramatically alter practice and impact citizen science efforts to ultimately enable more people to learn by contributing to the science endeavor. The project will directly equip the 15 participating citizen-science projects with authentic performance tools to assess the quality of their programing, which will expand their understanding of CS volunteer skills and help them better recruit and support their varied audiences (including rural, low-income and tribal communities).
How do afterschool programs view their local public libraries? Are they working with them, and in what ways? These are the questions that the Afterschool Alliance, along with its partners at the Space Science Institute’s National Center for Interactive Learning (NCIL) and the American Library Association, wanted to answer. Overall, our goal is to build bridges between the afterschool and library fields, so that both can share knowledge and resources to better serve our youth. While our work together has primarily focused on science, technology, engineering, and math (STEM) education through
Scientific institutions are increasingly embracing values of inclusivity and public engagement, but how do these two dimensions intersect? Science festivals have rapidly expanded in recent years as an outgrowth of these values, aiming to engage and educate the public about scientific topics and research. While resources invested in public engagement by scientists, universities, and governments are admirable in principle; this study indicates that their ambition to broaden the reach of science may be going unrealized in practice. Using data from three major UK science festivals, we demonstrate
McWane ScienceCenter (McWSC) is a non-profit, interactive science museum committed to showing the public how science and technology enrich their lives and help them solve problems. McWSC has a goal of extending the power of experiential learning to as many people as possible, particularly those who would otherwise not be able to do so on their own. McWane's environmental education initiative, the Envirosphere Educational Project, uses NOAA's Science on a Sphere (SOS) to provide environmental education and workforce development programs for an estimated 200,000 people. This number includes the general public, school groups from across the region, and 2,500 children in low-income communities from across the state of Alabama. All visitors have the opportunity to go to the SOS exhibit and participate in environmental education programs led by McWSC Education Staff. Each program corresponds to one of the SOS data sets and to the Alabama Course of Study Standards for elementary and secondary schools. The intended outcomes of the Project are to make complex environmental science concepts more accessible to people of all ages; to provide educational opportunities to children who would otherwise not have access to this type of information; to partner with local and state academic institutions, school boards and municipalities to improve environmental science curricula and awareness; and to increase the visitor s knowledge of and pique his/her interest in science and its related real-world applications.
Environmental education is about creating healthier communities for all—with ecological integrity, shared prosperity, and social equity as our long-term goals. Environmental educators have been working in, with, and for communities for decades. As communities have evolved, so has the field of environmental education. In creating the Community Engagement: Guidelines for Excellence, NAAEE brings the field’s professional standards to environmental educators’ dynamic work in today’s communities.
Why are these guidelines important? Environmental educators everywhere work in a constantly shifting
DATE:
TEAM MEMBERS:
North American Association for Environmental Education (NAAEE)Michele ArchieSusan ClarkJudy Braus
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science