This study collected data from seven planetarium email lists (one per planetarium regional organization in the United States), as well as online survey panel data from residents in each area, to describe and compare those who do and do not visit planetariums.
To advance justice, equity, diversity, and inclusion in science, we must first understand and improve the dominant-culture frameworks that impede progress and, second, we must intentionally create more equitable models. The present authors call ourselves the ICBOs and Allies Workgroup (ICBOs stands for independent community-based organizations), and we represent communities historically excluded from the sciences. Together with institutional allies and advisors, we began our research because we wanted our voices to be heard, and we hoped to bring a different perspective to doing science with
DATE:
TEAM MEMBERS:
María Cecilia Alvarez RicaldeJuan Flores ValadezCatherine CrumJohn AnnoniRick BonneyMateo Luna CastelliMarilú López FrettsBrigid LuceyKaren PurcellJ. Marcelo BontaPatricia CampbellMakeda CheatomBerenice RodriguezYao Augustine FoliJosé GonzálezJosé Miguel Hernández HurtadoSister Sharon HoraceKaren KitchenPepe Marcos-IgaTanya SchuhPhyllis Edwards TurnerBobby WilsonFanny Villarreal
Many people are under-served by existing informal science learning (ISL) provisions and under-represented in STEAM (Science, Technology, Engineering, Arts, Mathematics/Medicine) study choices and careers. This paper reflects upon SMASHfestUK which was established, as both a STEAM festival and research platform, to explore methods and approaches for lowering the barriers to engagement with ISL in marginalised communities. To do this SMASHfestUK located its events in the heart of communities and worked with these communities to create those events. This paper tells their story through the voices
DATE:
TEAM MEMBERS:
Wyn GriffithsLindsay Keith
resourceresearchProfessional Development, Conferences, and Networks
The challenge to the science communication field put forward by Bruce Lewenstein, of the sector becoming a ‘ghetto’ of women's over-representation (see the commentary by Lewenstein in this issue), is a very timely wake-up call. This Commentary however, elaborates and frames the pivotal and constructivist premises on which this phenomenon should be interrogated and understood on many levels. It is critical that we undertake a deeper introspection, beyond just simplistic head counts of the number of women and men in the field, if we are to make sense of the seeming paradoxes that pervade the
Slides from the January 30, 2018 Webinar present information for preparing proposals for the NSF INCLUDES Alliance Solicitation (NSF 18-529). Includes a brief description of NSF INCLUDES, an explanation of Collaborative Change strategies and the NSF INCLUDES 5 elements of collaborative change, proposal recommendations, details on the NSF cooperative agreements and the NSF Merit Review criteria, and provides useful resources.
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.
ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE:
-
TEAM MEMBERS:
Shaik JeelaniBruce CrawfordMohammed QaziJeffrey GrayJacqueline Brooks
Dr. Ann Chester, Director of the Health Sciences and Technology Academy (HSTA) in West Virginia was looking for professional researchers interested in working with HSTA's high school-aged participants through community-based participatory research (CBPR) projects. Dr. Alicia Zbehlik, with the Dartmouth Institute for Health Policy & Clinical Practice in New Hampshire, needed to further her research in knee osteoarthritis to support a pilot intervention in her target population. The two met, saw potential benefits to both organizations in forming a partnership, and agreed to undertake a one-year
DATE:
TEAM MEMBERS:
Paul Luis SicilianoBethany L. HornbeckSara HanksSummer L. KuhnAlicia J. ZbehlikAnn L. Chester
This article explores science communication from the perspective of those most at risk of exclusion, drawing on ethnographic fieldwork. I conducted five focus groups and 32 interviews with participants from low-income, minority ethnic backgrounds. Using theories of social reproduction and social justice, I argue that participation in science communication is marked by structural inequalities (particularly ethnicity and class) in two ways. First, participants’ involvement in science communication practices was narrow (limited to science media consumption). Second, their experiences of exclusion
The lack of equitable access to science learning for marginalized groups is now a significant concern in the science education community (Bell et al. 2009). In our commitment to addressing these concerns, we (the HERP Project staff) have spent four years exploring different ways to increase diverse student participation in our informal science programs called herpetology research experiences (HREs). We wanted the demographics of participants to mirror the racial, ethnic, cultural, linguistic, and socioeconomic demographics of the areas where our HREs are held. To achieve this, project staff
While interest in citizen science as an avenue for increasing scientific engagement and literacy has been increasing, understanding how to effectively engage underrepresented minorities (URMs) in these projects remains a challenge. Based on the research literature on strategies for engaging URMs in STEM activities and the project team’s extensive experience working with URMs, the project team developed a citizen science model tailored to URMs that included the following elements: 1) science that is relevant to participants’ daily lives, 2) removal of barriers to participation, such as
This paper sketches the context for participation in science by girls from historically underrepresented populations and offers a detailed description of Sisters4Science (S4S) and its personalized, girl-centered pedagogy. The S4S example suggests a need to complement current out-of-school science programs with lessons from girl-centered practice and research.