Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Michelle Kortenaar Erin Jant Karen Via Carrie Jubran
resource research Resource Centers and Networks
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Sheri Vasinda Stephanie Hathcocke Joanna Garner Elizabeth Murray
resource research Public Programs
Community monitoring of harvested rainwater in underserved, rural and urban Arizona communities
DATE:
TEAM MEMBERS: Mónica D. Ramírez-Andreotta Leif Abrell Aminata Kilungo Jean McLain Robert Root-Bernstein
resource project Public Programs
The L.C. Bates Museum will deliver STEAM programming to neighboring rural, mostly low-income second grade children and their families through the Observing Ornithology science project. Over a two-year period, the museum will work with 40 teachers in 12 schools to support student learning tied to Next Generation core science performance measures. The project activities will use museum collections and other resources to present a series of three ornithology programs designed to motivate curiosity and engage children in observation activities that support a new approach to thinking, analyzing and solving. The museum will loan a new pop-up display to each of the 12 school libraries and will present four family and four children's museum bird days at the museum for participating students and their families during each year of the project. An external evaluator will measure the project's success in achieving defined performance measures that include strengthening the children's knowledge, understanding, and attitude toward the regional environment.
DATE: -
TEAM MEMBERS: Deborah Staber
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
DATE:
TEAM MEMBERS: Ross Higashi
resource project Public Programs
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.

Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.

This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Patricia Townsend Roslynn McCann Melissa Kreye Arthur Nash
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland
resource research Public Programs
Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and identify three groups of underserved counties based on the interaction between population density and poverty percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in areas with the fewest sites for informal
DATE:
TEAM MEMBERS: Rachel A. Short Rhonda Struminger Jill Zarestky James Pippin Minna Wong Lauren Vilen A. Michelle Lawing
resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.

The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne Jessica Andrews Janna Kook
resource project Informal/Formal Connections
Parents and adult caregivers play a significant role in young children's understanding of (and participation in) science, technology, engineering, and mathematics (STEM). Research suggests that early engagement with STEM can have a profound impact on children's use of STEM process skills such as exploration, observation, and problem-solving, as well as future academic success. An immediate yet ongoing challenge facing informal STEM learning providers is to understand how limited resources can be used to support effective STEM learning opportunities and experiences for all children and families. Through a collaboration between researchers, Head Start, two science centers (one rural, one urban), and educators, this project aims to foster STEM access and engagement with specific attention to young children and their caregivers. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Pilot and Feasibility study will apply an experimental, mixed-methods design to examine parent/caregiver and child (ages 4-5) interactions before, during, and after informal STEM experiences to identify which factors influence children's transfer of learning STEM process skills across multiple informal contexts. Research results will lay the foundation for a future longitudinal study. The project team will ask: (1) What types of parent/caregiver-child engagement at the science center are most predictive of children's application of STEM process skills in subsequent problem-solving tasks and school readiness? (2) How do variations in parent/caregiver-child conversational strategies during the science center visit influence children's memory and learning? and (3) How can informal educators best support Head Start family engagement and children's emerging STEM knowledge? This study will collect data on 240, 4-5-year-old children, with their caregivers, in two different science centers that serve a largely rural and largely urban population. Data sources will include video/audio of caregiver-child interactions at the science centers and at home, as well as children's recall, engagement with a problem-solving task, and school readiness scores. Coding and analysis of the tasks during and after the science center visit will detail mechanisms underlying children's memory, learning, and application of STEM process skills that transfer to the problem-solving task. The project will be implemented by a research-practice partnership, leveraging the expertise of project partners and communities to ensure the use of culturally responsive research practices. This research has the potential to strategically impact how science centers and Head Start grantees work together on Family Engagement programming to achieve equitable STEM learning opportunities, broadening participation for low-income young children and their families.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Jennifer Schwade Erin Jant Stacy Prinzing
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith