We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanJasmine ShawChristine VillanoChrista MulderElena SparrowDouglas Cost
Education Development Center (EDC) conducted the external evaluation of this second phase of NASA@ My Library. Library staff from partner libraries increased their confidence and ability to facilitate library programming related to Earth, space, and engineering.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and identify three groups of underserved counties based on the interaction between population density and poverty percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in areas with the fewest sites for informal
The independent evaluation firm Knight Williams, Inc. conducted a formative evaluation during Year 2 of the SciGirls CONNECT2 program in order to gather information about the partner educators’ use of, reflections on, and recommendations relating to the draft updated SciGirls Strategies. The evaluation aimed for two educators from each of 14 partner organizations – specifically the program leader and one educator who was familiar with the original SciGirls Seven – to provide reflections on their use of the draft SciGirls Strategies in their programs through an online survey and follow-up
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.
This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.
This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
In 2017, Concord Evaluation Group (CEG) conducted a summative evaluation of Design Squad Global (DSG). DSG is produced and managed by WGBH Educational Foundation. WGBH partnered with FHI 360, a nonprofit human development organizations working in 70 countries, to implement DSG around the globe.
In the DSG program, children in afterschool and school clubs explored engineering through hands-on activities, such as designing and building an emergency shelter or a structure that could withstand an earthquake. Through DSG, children also had the chance to work alongside a partner club from another
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.
This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE:
-
TEAM MEMBERS:
Anand GramopadhyeDerek BrownEliza GallagherKristin Frady
Dr. Ann Chester, Director of the Health Sciences and Technology Academy (HSTA) in West Virginia was looking for professional researchers interested in working with HSTA's high school-aged participants through community-based participatory research (CBPR) projects. Dr. Alicia Zbehlik, with the Dartmouth Institute for Health Policy & Clinical Practice in New Hampshire, needed to further her research in knee osteoarthritis to support a pilot intervention in her target population. The two met, saw potential benefits to both organizations in forming a partnership, and agreed to undertake a one-year
DATE:
TEAM MEMBERS:
Paul Luis SicilianoBethany L. HornbeckSara HanksSummer L. KuhnAlicia J. ZbehlikAnn L. Chester
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will collaboratively design, test and study effective and efficient ways to develop embedded assessments (EAs) of citizen science (CS) volunteer scientific inquiry skills in order to better understand the impact of these CS experiences on volunteer scientific inquiry abilities. EAs are assessment activities that are integrated into the learning experience and allow learners to demonstrate their competencies in an unobtrusive way. The acquisition of scientific inquiry skills is an essential, even defining, characteristic of citizen science experiences that has a direct influence on data quality. Methods for assessing the direct impact of CS on volunteers' scientific inquiry skills are limited. The project will result in EA measures designed for use by diverse CS projects, strategies that CS projects can use to develop EA assessment tools, and research findings that document opportunities, supports and barriers of this innovative method across a range of CS contexts. Findings and initial resources will be shared with the broad array of stakeholders in CS through conferences, workshops, peer-reviewed publication, community websites and other relevant venues. The results of this work also have the potential to generalize to other informal science learning experiences that engage the public in science The project will address two research questions: (1) What processes are useful for developing broadly applicable EA methods or measures? and (2) What can we learn about gains in volunteers' scientific inquiry skills when citizen science organizations use EA? These will be addressed through design-based research focused on two streamlining strategies. For the reframing data validation strategy, six leaders from five established citizen science projects will conduct secondary analyses of their existing databases to uncover the skill gains of CS volunteers that are currently unexplored in their data. For the common measure strategy, ten CS projects will collaborate to create and test common EA measures of select identification-based skills. Data will be gathered through meeting notes, participant interviews and action plans, and volunteer skill gains to capture process and products of each strategy. Data will be analyzed using grounded theory, multiple process techniques, multilevel models, and repeated-measures analysis of variance. The design-based-research framework will significantly expand project impacts by jump-starting evaluation of the participating CS projects and by producing initial resources for two distinct EA strategies that have the potential to dramatically alter practice and impact citizen science efforts to ultimately enable more people to learn by contributing to the science endeavor. The project will directly equip the 15 participating citizen-science projects with authentic performance tools to assess the quality of their programing, which will expand their understanding of CS volunteer skills and help them better recruit and support their varied audiences (including rural, low-income and tribal communities).
How do afterschool programs view their local public libraries? Are they working with them, and in what ways? These are the questions that the Afterschool Alliance, along with its partners at the Space Science Institute’s National Center for Interactive Learning (NCIL) and the American Library Association, wanted to answer. Overall, our goal is to build bridges between the afterschool and library fields, so that both can share knowledge and resources to better serve our youth. While our work together has primarily focused on science, technology, engineering, and math (STEM) education through