The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.
PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
Hopa Mountain, working in partnership with Montana State University (MSU), will develop innovative and coordinated opportunities for Montana youth to strengthen their STEM (Science, Technology, Engineering and Mathematics) skills and knowledge while preparing them for higher education and careers in health sciences. The overall project goal of HealthMakers is to support rural and tribal youth’s interest and exposure to careers in the sciences while giving them the skills and resources to play leadership roles in increasing healthy family practices in their homes and communities. HealthMakers will achieve meaningful impacts annually through four strategies: (1) Health-focused college preparation programs for 50 teens; (2) Summer academic enrichment programs for 20 teens; (3) Community-based science literacy events for 2,000 children and their families, and (4) Professional development for educators, community members, and parents. Hopa Mountain and MSU will engage youth, educators, community leaders, and parents in training opportunities through HealthMakers. Participants will take part in community-based workshops, college tours, and summer institutes led by MSU faculty, healthcare professionals, Hopa Mountain staff, and their peers. Through these strategic aims, HealthMakers will help create a stronger workforce and inspire students to pursue careers in the sciences.
PUBLIC HEALTH RELEVANCE:
HealthMakers will support the development of health-related outreach and college preparation programs and training resources to create a better-informed workforce for Montana and inspire students to pursue careers in the sciences. These strategic aims and deliverables benefiting rural and tribal families and children, will help create a stronger workforce and inspire students to pursue careers in the sciences. Working together, Hopa Mountain and Montana State University will support rural and tribal youth’s interest and exposure to careers in the health sciences while giving them the skills and resources to play leadership roles in increasing healthy family practices in their communities.
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.
PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.
This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Robert PowellMarc SternBrandon Frensley
Many of the Hispanic children and families who live in the Rio Grande Valley lack opportunities to engage in inspirational and educational experiences introducing Science, Technology, Engineering and Mathematics (STEM) concepts and related careers. The University of Texas, Rio Grande Valley (UTRGV) will adapt and research the "Energy and U Show," which will introduce thousands of children and families to an exciting and dramatic that shows interconverting different forms of energy. The show will meld the excitement of chemical demonstrations and the natural connection between energy and STEM education in a fully produced, on-stage science extravaganza. A foundational philosophy of the show is that there is additional real value in getting children and youth onto a college campus. For many of its participants, this is their first time sitting in a seat at a university, the first opportunity for them to envision themselves in this environment. In partnership with the University of Minnesota, which originally developed the show, UTRGV will adapt the show, now presented in English, to a bilingual, culturally accessible format that is designed to Hispanic family audiences and student groups in learning about energy and related careers. Evaluation results demonstrate that the show has effectively engaged thousands of Minnesota students. The target audience will be upper elementary (4th-5th grade), middle school students, and their parents. This project will be led by UTRGV, nation's second-largest Hispanic Serving Institution, with a student enrollment of 28,000, of which over 90% are Hispanic and more than 60% are first-generation college students). In addition to the show, the project will include: (1) a manual to guide implementation of the program and related resources at different national or international venues; (2) educational resources for parents, teachers and school counselors introducing STEM careers and specific STEM college majors; (3) mentoring of UTRGV faculty in outreach activities; and (4) dissemination of the show to other campuses and venues.
The project will conduct ongoing research and evaluation guiding the adaptation of the show and investigation of factors contributing to positive educational impacts of the project, which will be carried out by a bilingual/bicultural researcher. Project research instruments will measure student level of engagement, interest and learning, as well as college interest, in surveys and analysis of data pre and post demonstration. The project will specifically investigate the impact of language on student impacts. Each component of this project will be studied to determine program intervention effectiveness (the scientific demonstration and language of the demonstration). To determine program effectiveness, a baseline of data before program implementation will be established concerning Hispanic students, their persistence, and perceptions of the environment. The project will measure parent perceptions of STEM careers for their children through pre and post demonstration surveys and focus groups. Student and parent research participants will be able to use surveys or respond to other research activities in the language of their choice. Project findings will contribute to the knowledge base concerning how linguistically and culturally adapted science shows and related resources adapted into can have positive impacts regarding the STEM knowledge and careers of students and parents from low-income and Hispanic communities.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Karen LozanoArturo FuentesAaron MassariBrian Warren
This project will engage community members and youth in 13 rural, tribal, and Hispanic communities in the Four Corners Region of the south western U.S. with the science and cultural assets of water. Water is a significant and scarce resource in this geographic area. The Four Corners Region experiences low annual precipitation and high year-to-year fluctuations in water availability. Thus, water is a topic of great interest to community members, whose lives are shaped by water-related events such as drought, flood, and wildfires. Rural tribal, and Hispanic communities are often underserved with respect to science programming; their public libraries often function as the local science center. The project's inter-disciplinary team will develop, deploy, research, and evaluate an interactive traveling exhibit for small libraries, designed around regional water topics and complemented by interactive programming and community engagement events. Additionally, the team will build local capacity by fostering a community of practice among the host librarians, including participation through a support system--the STAR Library Network--to increase their science programming.
This project creates a traveling exhibit and complementary programming around water topics. Through an exhibit co-design model, communities will provide input in the exhibit development, identify water topics that are critical to them, and engage the multi-generational audiences. The exhibit merges the captivating attraction of water with the underlying science content and community context, giving patrons the opportunity to explore these topics through active learning stations, informational panels, citizen science-based activities, and an interactive regional watershed model. Artistic representations of water will be developed by community groups and incorporated into the exhibit as a dynamic display element.
Project goals are to:
Spark interest in and increase understanding of water as a critical resource and cultural asset across rural, tribal, and Hispanic communities in the Four Corners Region.
Increase availability of and access to engaging programming for underserved rural, tribal, and Hispanic communities focusing on the science and cultural aspects of water in the Four Corners Region.
Build capacity for libraries to implement water-focused science programs, and increase available science learning and science communication resources tailored to these informal learning settings.
Foster a Community of Practice (CoP) for participating librarians to support the development of their programming and content knowledge.
Advance the body of research on informal learning environments and their role in developing community members' science ecosystems and science identities, particularly in library settings.
The project team will rigorously assess the extent to which program approaches and components stimulate patrons' interest in science, increase science knowledge, and support building a personal science identity. The model is based on the STEM Learning Ecosystems Framework. Robust evaluation will guide the program development through a front-end needs assessment and iterative revision cycles of implementation strategies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Mentoring is a widely accepted strategy for supporting positive socioemotional and cognitive development across a variety of sectors including education, workforce development, and the justice system. An estimated 2.5 million volunteer mentors support youth development in the United States each year. However, there is broad concern that practice has outpaced empirical testing, with significant gaps in the research literature on important modifiers of mentoring relationships and their impacts. This is especially true for mentoring youth ages 10-14 in STEM. Studying highly successful programs may be one way to better understand the role of mentoring and moderators of mentoring effectiveness. The Science Club, a community-based STEM mentoring program for middle-grade youth in the Chicago area, will provide multiple sites for a research study to examine three important issues for advancing theory and practice for STEM mentoring. These issues include (1) understanding STEM mentoring for youth in the middle grades, (2) identifying outcomes and motivations for scientist mentors to more fully participate in mentoring programs, and (3) examining a model of middle-school-focused STEM mentoring collaboration.
Through a series of three studies, the team will investigate which elements of the mentoring relationships are associated with the demonstrated STEM identity gains in youth participants. The work will also contribute much-needed data on the impact of STEM mentoring relationships on the mentors themselves. Study 1 is designed as a retrospective study of program alumni, both youth and mentors, about the nature and extent of each their STEM identity shifts during their time in Science Club. A purposeful sample of 160+ youth and 100+ mentor alumni will participate. Study 2 is a prospective study of three consecutive cohorts of active Science Club participants, built on data and findings from Study 1. In Study 2, the team will design and implement a new Identity-Focused Mentoring Observation Instrument specifically aimed at exploring the nature and quality of mentoring relationships and their role in science identity development longitudinally. Three independent cohorts of 40 youth and 20 mentors each will participate. Study 3 is retrospective, examining how participating individuals and organizations perceive and are impacted by mentoring. The three studies employ a mixed methods approach utilizing surveys, observations, individual interviews, and document review.
This proposal will fill critical gaps in the mentoring literature regarding the formative middle school years through novel, empirical research. Building on the current literature and practice, outcomes of the work will inform practice and enhance knowledge-building in the field on both mentoring relationships and the collective impact of university-school-OST partnerships.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
There are several critical reasons to understand and support interest development in early childhood: (a) as a primary motivator of engagement and learning; (b) interest development in preschool predicts important learning outcomes and behaviors in early elementary school; and (c) early childhood interests motivate ongoing interest development. Thus, there is growing recognition that interest is not just important but fundamental to education and learning. Head Start on Engineering (HSE) is a multi-component, bilingual (Spanish/English), family-focused program designed to (1) foster long-term interest in the engineering design process for families with preschool children from low-income backgrounds and (2) support family development and kindergarten readiness goals. The HSE program, co-developed with the Head Start community, provides families with developmentally appropriate, story-based engineering design challenges for the home and then connects these to a system of strategically aligned Informal STEM Education (ISE) experiences and resources. This current project, HSE Systems, builds on a previous HSE Pathways project which (a) established that participating families develop persistent engineering-related interests; (b) highlighted the value that the Head Start community has for the program and partnership; and (c) generated a novel, systems perspective on early childhood interest development. The aim of HSE Systems is to develop and test a model of early childhood STEM engagement and advance knowledge of how the family as a system develops interest in STEM from preschool into kindergarten.
Through the Design Based Implementation Research (DBIR) process, the team will iteratively refine and improve the HSE program and theory of change using ongoing feedback and data from staff, families, and partners. It is also designed to explore program impacts on family interest development over a longer period, as children enter kindergarten. The DBIR work will focus primarily on the program model questions, while the case study research will focus on the family interest questions, with both strands informing each other. The initial work is organized around a series of feedback and design-testing cycles to gather input from families and other stakeholders, update the program components and activities in collaboration with families and staff, and prepare for full implementation. During the next phase, the team will implement the full program model with six Head Start classrooms and track family experiences and interest development into kindergarten. During final implementation phase, the team will finish data collection, conduct retrospective analysis with all the data, and update the program model and theory of change.
This project will directly address the AISL program goals by broadening access to early childhood informal STEM education for low-income communities, with a focus on Spanish-speaking families, and building long-term skills and learning dispositions to support STEM learning inside and outside of school. Beyond the topic of engineering, HSE supports Head Start school readiness and child and family development goals, which are the foundation of lifelong success.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This project in the Advancing Informal STEM (Science, Technology, Engineering and Mathematics) Learning program's Innovations in Development track aims to build professional capacity in Informal Science Education (ISE) institutions for effective engagement of Latinx audiences. A collaboration between The Exploratorium and the Children's Discovery Museum (CDM) of San Jose, Cambio is a professional development project based on the premise that developing cultural competence specific to Latinx communities and STEM learning, together with organizational change capacity, will enable ISE institutions to improve their ability to be inclusive of Latinx communities, cultures, and audiences. Cambio's ultimate aim is to broaden participation in STEM by building the ISE field's capacity to effectively engage Latinxs in informal STEM learning. ISE institutions and other out-of-school programs and organizations have an important role to play in inspiring and preparing the next generation of Latinx STEM students, employees, and educators. Cambio participants will deepen their engagement with the research and practice relevant to this role and build an understanding of what broadening Latinx engagement can and should look like in their institutions. Working with expert instructors and coaches, and together as peers, Cambio participants will apply what they learn to real-world strategic initiatives they implement at their home institutions.
The heart of the Cambio project is the creation of a professional development (PD) model for ISE institutions and their staff that synthesizes: (a) current knowledge about strategies for Latinx engagement in informal STEM learning; (b) previous NSF-funded projects that leveraged that knowledge to chart a way forward for the field; and (c) CDM's Cultural Competence Learning Institute professional development program for building cultural competence, inclusion, and organizational change in museums. This synthesis will form a robust professional development platform that has the potential to create a field-wide shift in the way informal science institutions approach working with Latinx audiences. The Cambio professional development program will include: a new professional development framework and curriculum that will reach 54 practitioners in 15 institutions; the development and dissemination of professional development tools and resources for use by ISE practitioners; a Community of Practice focused on Latinx engagement in informal STEM learning; evidence of the efficacy of the Cambio PD model; and knowledge generated by formative and summative evaluation that will inform other ISE efforts focused on increasing the participation of Latinxs in STEM. A STEM focus will be woven throughout the professional development experience that focuses explicitly on areas of intersection between Latinx culture and identities and STEM. Practitioners will increase their expertise in designing experiences that will invoke emotional engagement, spark curiosity and excitement, in ways that explicitly value Latinx identities.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.
Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This project will research and develop the Circuit, a mobile phone and web-based application that will empower families and the general public to discover the broad spectrum of informal Science, Technology, Engineering and Mathematics (STEM) opportunities that exist in most communities. These informal STEM resources include science and children's museums, science and computer camps, maker spaces, afterschool programs, citizen science and much more. There is currently no "one-stop" searching for these resources. Instead, participants must conduct multiple, inefficient Internet searches to find the sought for STEM resources. The Circuit will enable users to efficiently search a rich informal STEM database, identifying resources by location, geography, age levels, science discipline, type of program and other factors. The Circuit builds on SciStarter, an existing online platform that connects thousands of prospective and active citizen scientists to citizen science projects. SciStarter has made possible the collection and organization of several thousand citizen science projects that would otherwise be scattered across the web. The Circuit will build on SciStarter's technical achievements in the citizen science sector, while systematically encompassing the offerings of established national networks. By integrating existing networks of informal STEM resources, the app will afford the public with unrivaled access to informal STEM opportunities, while collecting data that reveals patterns of engagement towards understanding factors of influence between different types of STEM experiences.
The app will provide researchers with new opportunities for researching how families and adults participate in the ecosystem of informal STEM resources in their communities. The Circuit will develop web tools to aggregate and organize digital content from trusted, currently siloed, informal STEM networks of content providers. These include science festivals, science and children's museums, the American Association for the Advancement of Science (AAAS), and Discover Magazine (3 million readers), the largest general interest science publication. Each content partner will feed the app with information directly or through their membership and encourage adoption of The Circuit within their respective communities. The project will design digital tools, including APIs (application program interfaces) to acquire and share digital content, embeddable tools to record and analyze data about movement, engagement, and persistence across domains, and social media tools and related APIs to distribute, track, and analyze content, engagement and demographics. (An API is a code that allows two software programs to communicate with each other.) The project will conduct small-scale, proof-of-conduct studies, to test the viability of the platform to support future, independent full-scale research. An analytics dashboard will be designed and tested with partners, researchers, and evaluators to ensure access to data on patterns of visits, clicks, referrals, searches, "joins," bookmarks, shares, contributions, user-locations, persistence, and more, within and across domains. Because each partner will feed their analytics into the shared dashboard, this will provide unprecedented and much-needed data to advance research in informal STEM learning. The Circuit will allow the tracking of patterns of engagement across networks and programs. Anonymized analytics of behavioral data from end users of The Circuit will support new approaches to advance evidence-based understanding of connected informal STEM learning by exhibiting engagement patterns across informal STEM domains. Through volunteer participation by the public, the Circuit will explore the geographic and demographic patterns of participants in the system, and derive important design lessons for its own and future efforts to create curated systems of connected learning across STEM education in informal settings.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.