The New Directions in Audience Research Initiative, initially funded by IMLS in 2009, is a special initiative of the University of Washington Museology Graduate Program. New Directions aims to train graduate students in Audience Research & Evaluation within informal learning settings through laboratory style coursework that integrates the strengths of professional and peer mentoring, fieldwork, academics and client-centered experiences. Audience Research & Evaluation is an ever increasing field and one that is integral to all aspects of museum practice. Students who participate in New Directions learn the value of effectively incorporating outcomes based planning and research-based practice into their chosen area of museum practice and become advocates for evaluation within the museum field. Primary partner sites include the Woodland Park Zoo, and the Pacific Science Center who's Evaluation staff assist student teams in designing, implementing and reporting on evaluation projects within their institutions as well as other affiliated partner sites. Past affiliated partner sites include, the Burke Museum of Natural History and Culture, EMP Museum, Frye Art Museum, Henry Art Gallery, Museum of History and Industry, Northwest African American Museum, Seattle Aquarium, and the Washington Park Arboretum.
Founded in 1999, the Silicon Valley Astronomy Lectures are non-technical illustrated public lectures, presented on six Wednesday evenings during each school year at Foothill College, in the heart of California's Silicon Valley. Speakers over the years have included a Nobel-prize winner, members of the National Academy of Sciences, the first woman in history to discover a planet, an astrophysicist who is an award-winning science fiction writer, and many other well-known scientists explaining astronomical developments in everyday language. The series is jointly sponsored by the Astronomical Society of the Pacific, the SETI Institute, NASA's Ames Research Center, and the Foothill College Astronomy Program. In-kind funding and staff time is contributed by the sponsoring organizations. The lectures are held and videotaped in the 950-seat Smithwick Theater in Los Altos Hills. Thanks to a generous grant from an anonymous local donor, each lecture is now video and audio taped, professionally edited, and made available free of charge on a number of web sites. Videotaped lectures include: * Frank Drake discussing his modern view of the Drake Equation, * Sandra Faber on how galaxies were "cooked" from the primordial soup, * Michael Brown explaining how his discovery of Eris led to the demotion of Pluto, * Alex Filippenko talking about the latest ideas and observations of black holes, * Natalie Batalha sharing the latest planet discoveries from the Kepler mission, * Anthony Aguirre discussing how it is possible to have multiple universes, and * Chris McKay updating the Cassini discoveries about Saturn's moon Titan.
The NEES network is comprised of a central management office (NEEScomm) located at Purdue University, and 14 geographically distributed earthquake and tsunami research facilities. We are considered to be a Large Facility within the Engineering division. We have been responsible for the coordination of centralized education, outreach and training activities at each of theses research facilities plus assessment of these activities. We have conducted a very successful REU program for the past 5 years. Additionally we maintain a repository of education modules and learning objects available on our website.
LIGO's Science Education Center is in charge of Education and Public Outreach Component for the LIGO Livingston Observatory. The three prime efforts are: (1) Professional development for teachers utilizing lab facilities and cross-institute collaborations. (2) Outreach to students K-16 (targeting 5- 9th grade), with on-site field trips to the LIGO Lab and Science Education Center, as well as off-site visits & presentations. (3) Outreach to the general public and community groups with on-site tours and Science Education Center Experience, as well as off=site visits and presentations. LIGO's Science Education Center is located at the LIGO Observatory, and has an auditorium, a classroom and a 5000 square foot exhibit hall with interactive exhibits at its disposal to complete its mission. In addition LIGO-SEC staff serve to help press and documentary film makers complete their missions in telling the "LIGO story" and encouraging budding scientists.
NESCent’s Education & Outreach efforts are designed and developed to improve evolution education and public understanding of evolutionary science, expand opportunities for underrepresented groups, and contribute to professional development of tomorrow’s evolutionary biologists. Our programs and initiatives serve a diverse array of audiences (students, faculty, general public) at a variety of levels (K-12, undergraduate/graduate/postdoc, informal science education).
We have a wide spectrum of informal programs that include museum-based programs, afterschool programs, an NSF AISL project on science identity formation in girls, observatory visitor center programs, night-based programs, programs for Native American groups, undergraduate student-based outreach programs,and professional development for informal educations.
The Franklin Institute (TFI), in collaboration with the Institute for Learning Innovation (ILI), will conduct a research effort that explores the role that informal science learning plays in supporting girls' long-term interest, engagement and participation in science communities, hobbies and careers. Five longstanding programs for girls, begun 5-20+ years ago, will be the focus of the proposed study and include the National Science Partnership (NSP), Girls at the Center (GAC), Wonderwise, and Women in Natural Sciences (WINS). The selected study projects have access to girl participants who are high-school aged or older and represent diverse race, ethnicity and SES. A national Research Advisory Council will ground the investigation and review the findings at each stage of the research. The Community of Practice (CoP) literature (Lave and Wenger, 1991) will provide the theoretical frame for the overarching research question. Findings will document long-term impacts of girls' participation in identified informal science programs, determine how informal contexts in general contribute to girls' science learning and achievement, and develop a model for understanding the impact of informal science learning initiatives. Deliverables will include specific examples of informal learning experiences that support girls' long-term participation in science and evidence of the types of influences, including significant adults and particular activities, that contribute to girls' trajectories of participation. Dissemination tools will be a national conference, a research monograph and a series of workshops conducted in conjunction with professional conferences for informal science educators. By better understanding the impact of informal programs in science, specifically and more generally, and by developing and demonstrating an effective model for understanding such impact across projects, the proposed research stands to inform the field and provide a base for future project development and research efforts. The research results will improve the understanding of practice in these arenas and will document the significant role that informal programs place in influencing girls' vocational and avocational choices and participation in STEM fields. The study will also demonstrate the applicability of the CoP research model and its lessons to other informal science programs.
Based on nearly two decades of museum programming for low-income Hispanic and African American girls at the Miami Science Museum, this extension service project employs a train-the-trainers approach to build a network of museum-based Extension Agents dedicated to helping informal science educators attract the interest and support the persistence of minority girls, grades 6-12, currently underrepresented in STEM studies. Led by the Miami Science Museum, the collaboration brings together an experienced group of institutions with representation from the informal science, gender research, and engineering communities. In addition to the Museum, the Expert Project Team consists of key staff from the Association of Science-Technology Centers (ASTC), and SECME Inc. (formerly the Southeastern Consortium of Minorities in Engineering), who serve as the conduit for the participation of minority engineering professional organizations. An advisory/research panel of researchers in gender in STEM, whose work complements those of the project investigators, works closely with the Expert Project Team to prepare Extension Agents from ten geographically dispersed museums, who in turn provide a range of training and peer mentoring services to the practitioner community of informal science educators in science-rich institutions nationwide. Participating museums include: Connecticut Science Center (Hartford, CT), New York Hall of Science (New York, NY), Maryland Science Center (Baltimore, MD), Miami Science Museum (Miami, FL), COSI (Columbus, OH), St. Louis Science Center (St. Louis, MO), Louisville Science Center (Louisville, KY), Sci-Port (Shreveport, LA), Explora (Albuquerque, NM), and California Academy of Sciences (San Francisco, CA).
DATE:
-
TEAM MEMBERS:
Judy BrownLaura Huerta MigasMichele Williams
The LTER Network is an innovative platform for training the next generation of natural scientists in collaborative, integrative, long-term research in ecology. An important objective of the network is to share knowledge with other communities. The LTER Network Office addresses this objective by managing a Communication and Outreach program that targets key communities—scientists, policy makers, educators and students, and the mass media as a proxy of the rest of the non-specific audiences—and maintain strategic partnerships and collaborations that provide improved access to these communities.
This proposed four-year effort envisions a new approach to promoting science literacy through science journalism as a subject of study. It is premised on a critical set of assumptions: (a) Most citizens have the need to interpret scientific information found in popular media (e.g., newspapers, magazines, online resources, science-related television programs); (b) science journalism provides reliable, well-researched science information; (c) authentic science writing provides motivation to learn; and (d) standards and rubrics specifically developed for evaluating students' science-related expository text do not exist. Thus, the project approaches science journalism as a means to assist students to investigate and coherently write about contemporary science and to learn to base assertions and descriptions on reliable, publicly available sources. To this end, the project aims to develop, pilot, and evaluate a model of instruction that focuses on the following aspects: (a) Identifying questions of both personal and public interest; (b) evaluating contemporary science-related issues; (c) making available highly regarded sources of information as exemplars (in-print, online, interviews); (d) synthesizing information; (e) assessing information based on fact-checking using the five Ws (who, what, where, when, and why); and (f) coherently explaining claims and evidence. A hypothesis and a set of research questions guide this effort. The hypothesis is the following: If participating students successfully attain the fundamental elements of the proposed model, then they will become more literate and better critical consumers and producers of scientific information. The main guiding research question of the proposed activity is the following: Does the teaching of science journalism using an apprenticeship model, reliable data sources, and science-specific writing standards improve high school students' understanding of science-related public literacy? Secondary questions include (a) Is the teaching of science journalism an efficacious, replicable and sustainable model for improving science literacy?; (b) How useful are science-related standards and rubrics for scaffolding and evaluating students' science writing and science literacy?; and (c) What is the nature of the engagement in science that this apprenticeship invites?
DATE:
-
TEAM MEMBERS:
Alan NewmanJoseph PolmanE. Wendy SaulCathy FarrarAlan Newman
The C-DEBI education program works with audiences at all levels (K-12, general public, undergraduate, graduate and beyond) in formal and informal settings (courses, public lectures, etc.). Sub-programs focus on community college research internships and professional development for graduate students and postdocs.
"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "