Skip to main content

Community Repository Search Results

resource project Media and Technology
The range of contemporary "emerging" technologies with far-reaching implications for society (economic, social, ethical, etc.) is vast, encompassing such areas as bioengineering, robotics and artificial intelligence, genetics, neuro and cognitive sciences, and synthetic biology. The pace of development of these technologies is in full gear, where the need for public understanding, engagement and active participation in decision-making is great. The primary goal of this four-year project is to create, distribute and study a set of three integrated activities that involve current and enduring science-in-society themes, building on these themes as first presented in Mary Shelley's novel, Frankenstein, which will be celebrating in 2018 the 200th anniversary of its publication in 1818. The three public deliverables are: 1) an online digital museum with active co-creation and curation of its content by the public; 2) activities kits for table-top programming; and 3) a set of Making activities. The project will also produce professional development deliverables: workshops and associated materials to increase practitioners' capacity to engage multiple and diverse publics in science-in-society issues. The initiative is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project by Arizona State University and their museum and library collaborators around the country will examine the hypothesis that exposing publics to opportunities for interactive, creative, and extensive engagement within an integrated transmedia environment will foster their interest in science, technology, engineering and mathematics (STEM), develop their 21st century skills with digital tools, and increase their understanding, ability, and feelings of efficacy around issues in science-in-society. These three distinct yet interlocking modes of interaction provide opportunities for qualitative and quantitative, mixed-methods research on the potential of transmedia environments to increase the ability of publics to work individually and collectively to become interested in and involved with science-in-society issues.
DATE: -
TEAM MEMBERS: Edward Finn Steve Gano Ruth Wylie Rae Ostman David Guston
resource project Public Programs
The goal of the project is to research ways in which the teaching of basic computing skills can be integrated into after-school choral programs. The team will study how to adapt the interdisciplinary, computing + music activities developed to date in their NSF-funded Performamatics project with college-aged students to now introduce middle school-aged students to computing in an informal, after-school choral program. They will investigate how to leverage the universal appeal of music to help students who typically shy away from technical studies to gain a foothold in STEM (Science, Technology, Engineering, and Mathematics) by programming choral music. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The team will use a qualitative and quantitative, mixed-methods approach to study four research questions: (1) Can middle school-aged children follow the connections from singing to digitized sound to MIDI and back to music and learn to program using the songs they like to sing? To encourage students to become involved with manipulating sounds and programming music on their own computers, the approach will employ Audacity and Scratch, two free music recording, editing, and generation platforms. The team will study how well programming of music helps them acquire STEM skills by assessing the complexity and efficacy of the programs they can learn to code. (2) Can programming their individual parts help students learn to sing in three- and four-part harmony? The main focus is on learning of STEM, but research on this question will evaluate whether programming skills can help students learn about music too. (3) What resources, models, and tools (RMTs) are necessary to integrate STEM education into a middle school after-school choral program? The team will work with local middle schools to research techniques for integrating computing into after-school choral programs without disrupting their musical focus. They will identify what choral teachers need in order to do this integration, and they will devise and evaluate techniques for adding STEM skills to the students' choral experience. (4) Can the involvement of adults who match the students' racial and/or cultural backgrounds have a positive effect on the "people like me don't (or can't) do that?" belief that so often stifles efforts to attract underrepresented groups to STEM? They will actively seek to involve students of underrepresented groups in the program by recruiting adult role models from these groups who are involved with both music and computing. They will use attitudinal surveys to assess whether these adults have any effect on the students' self-efficacy and the "people like me" syndrome that hinders some from engaging in STEM.
DATE: -
TEAM MEMBERS: Jesse Heines Daniel Walzer
resource project Media and Technology
On April 25, 2015, a devastating M=7.8 earthquake occurred approximately 80 km to the northwest of the Nepalese capital of Kathmandu. At the location of this earthquake the India plate is converging with Eurasia driving the uplift of the Himalayan mountain range. This RAPID award will enable the expansion and updating of a planned television documentary (The Himalaya Connection) about earth science research in Nepal, Bangladesh, India, and Mongolia from a half-hour to a one-hour show, in order to incorporate the Nepal earthquake and the lessons learned for making the region safer from natural hazards. The earthquakes occurrence provides a rare educational opportunity to increase the impact of new scientific information about earth processes while the disaster remains fresh in the global public consciousness. Using footage of scientists doing field research and related landscape, cultural scenes, and interviews filmed over the past several years under several NSF-funded projects, the producers will build on the opening created by the earthquake and its aftermath to incorporate lessons learned from this event into a deeper understanding of the forces at work and their wider impact on the region, and the scientific research behind this knowledge. Because The Himalaya Connection was already in post production, the film can be revised and completed fairly quickly and distributed soon enough to take advantage of the recent information about Nepal that has been so widespread in the global media. The documentary's primary audience is television viewers watching PBS in North America; the film will also be distributed for international broadcast. The filmmakers are Doug Prose and Diane LaMacchia of Earth Images Foundation, award-winning producers of earth science television documentaries. Activities under this RAPID project will involve post-production, mastering, and distribution of the documentary.
DATE: -
TEAM MEMBERS: Doug Prose Diane LaMacchia
resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn
resource project Professional Development, Conferences, and Networks
Despite strong efforts by many people and institutions and a deep, ongoing commitment from the National Science Foundation, progress remains uneven and slower than desired with respect to broadening participation of people from all parts of society in the science, technology, engineering, and mathematics (STEM) fields. The broadening participation challenge will become even more urgent with increasing demographic and socioeconomic changes underway in our nation. Through this conference and workshop grant, the Association of Science-Technology Centers (ASTC) will convene a group of diverse thought leaders from across higher education, profit, non-profit, K-12 and informal STEM education sectors for one day of brainstorming and prioritizing possible ideas, strategies, and actions that could be aggressively pursued by broadening participation initiatives. The findings of this workshop could support ongoing, field-wide discussions about the next generation of projects and efforts to address issues of underrepresentation in STEM. This workshop will build upon a foundation of existing NSF programs and funded projects and will draw upon ongoing efforts by ASTC's Center for Advancement of Informal Science Education (CAISE) to address broadening participation challenges in informal STEM learning environments. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Inclusion Across the Nation of Communities of Learners that Have Been Underrepresented for Diversity in Engineering and Science (INCLUDES) Leadership Workshop will engage up to 55 local and non-local participants from the higher education, profit, non-profit, K-12 and informal STEM education sectors that have been selected for their extensive but varied experiences with efforts to broaden participation in STEM. Before the workshop, participants will prepare for the plenary talks, panel presentations, and breakout session discussions by reading selected literature about effectively scaling innovations, collective impact strategies, catalytic innovations, and other related theory. Specific goals of this one-day workshop are 1) to consider potential scalable high-impact innovations in STEM education to assure success for all people across the nation; and 2) to generate ideas, strategies, and actions that could substantially alter the current landscape and potentially achieve a transformative change for inclusion. ASTC proposes to disseminate the workshop findings to worksop participants, the broader communities to which participants belong, and even the National Science Foundation. A workshop synthesis report and other content generated at the workshop (speaker slides, presentation video, graphic documentation to name a few) will reside at ASTC's informalscience.org website. ASTC proposes an extensive communications media strategy that will draw stakeholder attention to these resources and support field-wide discussion and action around broadening participation.
DATE: -
resource project Professional Development, Conferences, and Networks
This virtual conference proposal would bring together NSF researchers and their media partners who worked collaboratively on previous NSF projects involved with communicating research to public audiences (the now archived CRPA program). The goal of the conference to is examine successful practices and lessons learned and aggregate the findings in a manner that can productively inform and support current and future efforts of this kind. The key objectives of the work will be to identify approaches that broaden reach, increase the effectiveness of researcher/outreach organizational partnerships, and make recommendations for amplifying the strategic impact of these projects. Prior to the conference the PI will conduct a multiphase process of document review, online interviews, and questionnaires. Two virtual workshops will be conducted with a subset of previous grantees and their media partners noted for effective collaboration and outcomes. The first workshop will have participants sharing findings on project strengths and areas needing improvement based on past experience. They will identify possible generic tools and a framework that could be shared across projects. The second workshop will focus on the identified successful strategies might be implemented more widely. The broader impacts of this multi-component conference will help future grantees better understand, expand, and work more strategically with their outreach partners.
DATE: -
TEAM MEMBERS: Michele Korf Arthur Smith
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
DATE: -
TEAM MEMBERS: Ruth Kermish-Allen Christine Bevc Karen Peterman
resource project Media and Technology
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE: -
TEAM MEMBERS: Sara Lacy Roger Tobin Nathaniel Brown Stamatis Vokos Rachel Scherr Kara Gray Lane Seeley Amy Robertson
resource project Public Programs
Advances in genomics are rapidly increasing our understanding of not only the human body, disease and health-related issues but how humans and other species interact and respond to changing environments. Genomics represents a scientific frontier that connects with individuals and families at the most personal level, with the potential to shape the future of human healthcare. However, advances in genomics and their implications for personalized medicine are far out-pacing public awareness and knowledge. The Connecticut Science Center and the University of Connecticut partnered under a National Science Foundation funded collaboration between Dr. Rachel O'Neill, UCONN, and Dr. Hank Gruner, Connecticut Science Center, and the National Center for Science & Civic Engagement to engage the public in developing a conceptual understanding of genomics.
DATE: -
TEAM MEMBERS: Connecticut Science Center Rachel O'Neill Hank Gruner
resource project Public Programs
Health care in the United States is expensive and complex, and there are many competing interests that make it an increasing necessity for health care consumers to take an active role to better advocate for themselves and those who are impacted by the decisions that are made. Making effective health care choices requires both science literacy and critical thinking skills to understand and evaluate options. The Weighing the Evidence (tentative title) project team will work with medical experts, researchers, health and medicine journalists, and community partners to improve visitors’ critical analysis skills and ability to review evidence so that they can make informed health care decisions. To meet this goal a traveling exhibition will be developed utilizing a unique collection of historical and contemporary quack medical devices donated to the Science Museum of Minnesota when the Museum of Questionable Medical Devises closed in 2002. While the collection is rich in fun and entertainment, it also offers a multitude of opportunities to reflect on science, society and ethics, skepticism, and objectivity. This collection, along with interactive experiences, theater programs, outreach programming and a companion web site will provide visitors with the tools needed to become more knowledgeable health care consumers.
DATE: -
TEAM MEMBERS: Laurie Fink Bette Schmit
resource project Public Programs
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.
DATE: -
TEAM MEMBERS: Virginia Shepherd
resource project Public Programs
The Oregon Museum of Science and Industry (OMSI), in partnership with the J. Craig Venter Institute (JCVI), proposes to develop the Zoo in You: Exploring the Human Microbiome, a 2,000 square foot bilingual (English and Spanish) traveling exhibition for national tour to science centers, health museums, and other relevant venues. The exhibition will engage visitors in the cutting edge research of the National Institutes of Health's (NIH) Human Microbiome Project (HMP) and explore the impact of the microbiome on human health. To enrich the visitor experience, the Zoo in You project will also produce an interactive bilingual website and in-depth programs including science cafes and book groups for adult audiences. JCVI will provide its expertise and experience as a major site for HMP genomics research to the project. In addition, advisors from the Oregon Health & Science University, Multnomah County Library, the Multnomah County Health Department, ScienceWorks Hands-On Museum, Science Museum of Minnesota, and other experts will guide OMSI's development of exhibits and programs. The Institute of Learning Innovation in collaboration with OMSI will evaluate the exhibits, programs, and website. Front-end, formative, remedial, and summative evaluation will be conducted in English and Spanish at OMSI, ScienceWorks, and tour venues. The exhibition's target audience is families and school groups with children in grades 4-12. Latino families are a priority audience and the project deliverables will be developed bilingually and biculturally. The Zoo in You will tour to three venues a year for a minimum of eight years. We conservatively estimate that over two million people will visit the exhibition during the national tour. This project presents a powerful opportunity to inform museum visitors about new discoveries in genomic research, to invite families to learn together, and to present and interpret health-related research findings for diverse audiences. PUBLIC HEALTH RELEVANCE (provided by applicant): Our research education program, the Zoo in You (ZIY): Exploring the Human Microbiome, is relevant to public health because it will inform exhibition visitors and program participants about the significant new research of the NIH's Human Microbiome Project (HMP). Visitors will make connections between basic research, human health, and their own personal experiences. The bilingual (English and Spanish) ZIY exhibits and programs will present research finding and public health information in enjoyable and engaging ways to reach diverse family and adult audiences.
DATE: -
TEAM MEMBERS: Victoria Coats