The Anchorage Museum, in partnership with the Washington State Historical Society and Cook Inlet Historical Society, will fabricate, and present a 7,500-square-foot exhibition on James Cook’s Third Voyage to the Pacific Ocean, titled Arctic Ambitions: Captain Cook and the Northwest Passage. The exhibition will open March 27, 2015 in Anchorage and run until September 11, at which time it will travel to the Washington State Historical Society in Tacoma. The exhibition will be part of the Municipality of Anchorage’s Centennial Celebration. Although Cook spent time in southern seas en route to America, the prime focus of the exhibition will be the Northwest Coast, mainland Alaska, the Aleutian Islands, the Bering Sea, Siberia, Kamchatka, and the Arctic Ocean.
The Young Developers program is an after school program conceptualised and run by The P-STEM Foundation. It introduces computer programming and design concepts to high school age students from South African historically disadvantaged communities, where the majority of students have had little or no interaction with computers. Young Developers uses Self Organised Learning Methodology and involves introducing a series of increasingly complex challenges / questions that the participants have to collaboratively solve. The first module is run in Scratch with the final objective being the creation of a racing car game. The second module is run in Python using Turtle graphics with an objective of creating an animation. This program runs as pods in each of the communities that the P-STEM foundation works in. Each pod has up to 30 teens from the age of 10 to 18. Each pod is peer led and peer driven, and the pace of learning is determined by the participants. In 2015, we would also like to introduce national competitions which pods participate in against other pods.
The Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents is a Track 2 project using spherical display systems to educate the public about the global significance of vents in the world's oceans and in the dynamic processes of Earth as a whole. The project is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, members of the Magic Planet Community and Science On a Sphere® (SOS) Network, respectively. The proximity of the two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS. The new content for spherical display systems will address key principles of Earth Science Literacy and Ocean Literacy. Imagery and data from research cruises are being used to: show how hydrothermal vents link dynamic processes in the lithosphere, hydrosphere, and biosphere; promote stewardship of life in remote environments; and excite viewers about the deep ocean frontier including exploration, research, and resources. The Global Viewport project is geared towards informal science education but also includes a component for teacher professional development from schools in towns with populations underrepresented in STEM fields. An online portal for content on Google Earth enables virtual exploration of deep-sea vents from home, extending the learning experience beyond a single visit to an informal science education institution. The online content, including interactive learning modules and games, is being promoted to marine educators and scientists at national conferences and through the COSEE social network.
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
This Science Learning+ Planning Project will develop a prototype assessment tool (based on a mobile technology platform) to map STEM learning experiences across different learning ecologies (e.g. science centers, mass media, home environment) and to develop research questions and designs for a Phase 2 Science Learning+ proposal. The tool will focus on the impact of the learning ecologies on knowledge, interest, identity and reasoning rather than emphasize learning in a specific content area. The proposing team will develop and conduct a small scale usability study during the planning period, which will inform what is proposed in the Phase 2 research. A key focus of the planning period will be to identify and develop the theoretical constructs (i.e., outcomes) to be measured by the prototype App. As a starting point, the project will start with four of the six strands identified in Learning Science in Informal Environments (National Research Council, Bell et al., 2009): (1) interest triggered by a STEM experience; (2) understanding scientific knowledge; (3) engaging in scientific reasoning; and (4) identifying with the scientific enterprise. Discussion among the project partners during the planning process will revolve around how these strands should be measured in the Phase 2 research across ecologies. The measurement tool will assess the goal(s) that people set as they engage in STEM learning within each ecology and will measure the individuals' duration and level of engagement. The project will strive to utilize measures that: (1) are nonobtrusive; (2) are embedded in STEM experiences; (3) can be used across ecologies; (4) can be scaled for other ecologies than the ones examined in Phase 2 research; and (5) will be easy to use by researchers and practitioners.
DATE:
-
TEAM MEMBERS:
Bradley MorrisJohn DunloskyGreat Lakes Science CenterUniversity of LimerickIdeaStream (UK)Irish Independent newspaper
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE:
-
TEAM MEMBERS:
James DiamondNew York City Hive Learning NetworkMOUSEDigitalMeKatherine McMillan
Based on the number of visitors annually, zoos and aquariums are among the most popular venues for informal STEM learning in the United States and the United Kingdom. Most research into the impacts of informal STEM learning experiences at zoos and aquariums has focused on short-term changes in knowledge, attitudes and behaviors. This Science Learning+ project will identify the opportunities for and barriers to researching the long-term impacts of informal STEM learning experiences at zoos and aquariums. The project will address the following overarching research question: What are and how do we measure the long-term impacts of an informal STEM learning experience at a zoo and aquarium? While previous research has documented notable results, understanding the long-term impacts of zoo and aquarium learning experiences will provide a deeper and more nuanced understanding of the impact of these programs on STEM knowledge, skills and application. This study will use a participatory process to identify: (1) the range of potential long-term impacts of informal science learning experiences at zoos and aquariums; (2) particular activities that foster these impacts; and (3) opportunities for and barriers to measuring those impacts. First, an in-depth literature review will document previous research efforts to date within the zoo and aquarium community. Second, a series of consultative workshops (both in-person and online) will gather ideas and input from practitioners, researchers, and other stakeholders in zoo and aquarium education. The consultative workshops will focus on two questions in particular: (1) What are the different types and characteristics of informal science learning experiences that take place at zoos and aquariums? and (2) What are the long-term impacts zoos and aquariums are aiming to have on visitors in relation to knowledge, attitudes, skills and behaviors/actions? Finally, visitor surveys at zoos and aquariums in the US and UK will be conducted to gather input on what visitors believe are the long-term impacts of an informal STEM learning opportunity at a zoo or aquarium. The data gathered through all of these activities will inform the design of a five-year, mixed-methods study to investigate long-term impacts and associated indicators of an informal STEM learning experience at a zoo or aquarium. One of the aims of the five-year study will be to test instruments that could eventually be used by the global zoo and aquarium community to measure the long-term impacts of informal STEM learning programs. Designing tools to better understand the long-term impacts of informal STEM learning at zoos and aquariums will contribute to our ability to measure STEM learning outcomes. Additional benefits include improved science literacy and STEM skills amongst visitors over time and an understanding of how education programs contribute to wildlife conservation worldwide.
DATE:
-
TEAM MEMBERS:
Brian JohnsonStanford UniversityLancaster UniversitySarah ThomasNicole ArdoinMurray Saunders
resourceprojectProfessional Development, Conferences, and Networks
This is a Science Learning+ planning project that will develop a research plan for investigating how applying the principles of embodied cognition to the design of informal learning environments can support young children's (ages 2-6) engagement with, and understanding of, science topics and concepts. While it has been fairly well established that cognition is intertwined with the body's interaction in the physical world, the precise means of applying these ideas to the design of effective learning environments is still emerging. Experimenting with various embodied cognition activities and physical learning configurations to understand what conditions are optimal for informal learning environments for early learners is a major objective of this project. During the planning grant period, the project will identity additional practitioner/research collaborations and will develop research plans for a suite of studies to be enacted by multiple teams of informal learning practitioners and cognitive scientists across the US and UK and that will be submitted as a Phase 2 research. The primary activities of this planning period include organizing a series of workshops that bring together informal learning educators and embodied cognition researchers to engage in deep discussion and design experimentation that will inform the development and refinement of research questions, protocols, and measurement tools. These discussions will be informed by observations of young children as they interact with the River of Grass, an exhibit prototype in which principles of embodied cognition are embedded in its design. The planning period will be led by a collaborative team of informal learning practitioners and cognitive scientists from the US and UK. This group will also oversee plans for the development of a new model for informal STEM research in which a constellation of practitioner/research teams across multiple organizations investigates topics of importance to informal learning practice and research that have the potential to result in a robust body of research that informs the design of informal learning spaces.
Researchers and practitioners in the US and the UK, organized by Twin Cities Public Television in collaboration with co-PIs from Indiana University and the University of Bradford in the UK, will develop a research agenda focused on understanding how participation by youth in various online environments, called "affinity spaces," can promote and enable new approaches to informal STEM learning. Affinity spaces provide opportunities for youth to develop deep interest and engagement in specific topics as well as to interact in groups with others who share common interests. By focusing on affinity spaces, this Science Learning+ project will contribute to the collective understanding of how digital media supports STEM learning. Of particular interest is the potential of these spaces to offer multiple interest-driven trajectories, opportunities to learn with others, and paths toward becoming authentic participants in the discussions. Specifically, the collaborators will: (1) produce a literature review on affinity spaces and informal science learning; (2) organize and convene a two-day workshop to review and refine primary research questions; and (3) produce a white paper summarizing outcomes. Affinity spaces have the ability to connect millions of learners. Developing a research agenda to learn how these spaces can involve youth in experiences across the entire spectrum of STEM disciplines promises to reveal new ways to enhance and enrich the entire ecosystem of informal science learning. In addition, the project will enhance the international research and education infrastructure by facilitating collaborations among researchers in the U.S. and the UK who work at the frontiers of social media and learning.
President Obama announced in April 2013 that the Corporation for National and Community Service (CNCS) would launch a STEM AmeriCorps initiative to build student interest in STEM. A RFA is currently being prepared to be released in the late fall of 2013. This project will engage in quick response research to identify an evaluation and research agenda that can begin to inform the program launch. Thus, the timeframe for informing the initial stages of STEM AmeriCorps is relatively short, and the creation of an evaluation and research agenda is very timely. The products from the RAPID proposal are: (1) a review of the evaluation and research literature on the use of volunteers and/or mentors to build students' interest in STEM; (2) to convene a workshop to identify evaluation and research priorities to guide the initiative; and (3) a summary evaluation agenda that identifies promising directions along with the strength of evidence around key issues.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will further develop, roll out, and conduct research on a set of materials that will introduce middle school age youth to innovative and engaging engineering challenges in the Boys and Girls Club (B&GCs) context. Building on substantial prior work and evaluation-based learning, WISE Guys and Gals - Boys & Girls as WISEngineering STEM Learners (WGG) will: (1) combine engineering design activities with the (open source, online) WISEngineering infrastructure; (2) scale-up the infrastructure; (3) engage youth in informal afterschool experiences; and (4) collect a wealth of rich data to further our understanding of how youth learn through these experiences. This work will be conducted by Hofstra University's Center for STEM Research in conjunction with Brookhaven National Laboratory (BNL), The CUNY Graduate Center's Center for Advanced Study in Education (CASE), the Boys & Girls Club of America, and 25 B&GCs in New York and New Jersey. The underlying theoretical framework builds on proof-of-concept work supported by NSF and the Bill and Melinda Gates Foundation. An open source, on-line interface (WISEngineering) provides numerous virtual tools (e.g., social networking, Design Journal, embedded assessments) that promote learning and collaboration through challenging, thoughtful, and creative work. WGG will explore how to incorporate creativity, social networking, connections to real-world STEM needs/careers, and teamwork into challenges that can be completed in a one-hour period, an activity time constraint in many B&GC settings. Staff from the clubs will participate in face-to-face and virtual professional development in an effort to build their capacity as facilitators of STEM learning. Research will focus on: (1) how activities developed for 60-minute implementation and guided by informed engineering design and interconnected learning frameworks support youth learning and engagement; and (2) characteristics of the professional development approach that support B&GC facilitators' capacity development. By the end of the project, over 6,000 middle school aged youth, the majority from groups underrepresented in STEM areas, will gain experience with engineering design as they develop engineering thinking, new STEM competencies, STEM career awareness, and an appreciation for the civic value of STEM knowledge.
DATE:
-
TEAM MEMBERS:
David BurghardtXiang FuKenneth WhiteMelissa Rhodes