Skip to main content

Community Repository Search Results

resource project Media and Technology
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.

During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
DATE: -
TEAM MEMBERS: David Reitze
resource project Media and Technology
On August 21, 2017, a total solar eclipse will traverse the United States from Oregon to South Carolina. Millions of Americans will witness totality, in which the Moon completely blocks the Sun, and over 500 million people across North America will experience a partial eclipse. In this project, the American Astronomical Society (AAS) will forge an umbrella organization consisting of an eclipse project manager, a centralized website of resources, and a mini-grants program to coordinate and facilitate local and national activities that will educate the public about the science of this rare event. The project will leverage this fascinating display of beauty to engage as many people as possible in the endeavor of science.

This project will involve scientists, educators, and amateur and professional eclipse observers in developing extensive plans for unique outreach activities to reach a significant fraction of the diverse U.S. population. The goal is to use the eclipse, which will generate significant media attention, to educate a broad audience about the associated science and to encourage young people from widely diverse backgrounds to pursue careers in science. Special emphasis will be placed on citizen science projects and on educational activities targeting groups that are underrepresented in STEM disciplines. A mini-grants program will be established to fund efforts specifically targeting underrepresented groups in order to increase their participation. The evaluation plan will focus on the utilization of the materials on the website and the learning gains of participants in specific activities funded by the mini-grants. All lessons learned will be collated in a publicly available formal report and will lay the groundwork for a strategic plan to fully capitalize on the next U.S.-based solar eclipse in 2024. Because this project aligns well with the objectives of multiple NSF directorates, this award is co-funded by the Division of Undergraduate Education and the Division of Research on Learning in the Directorate for Education and Human Resources; the Division of Astronomical Sciences in the Directorate for Mathematical and Physical Sciences; and the Division of Atmospheric and Geospace Sciences in the Directorate for Geosciences.
DATE: -
TEAM MEMBERS: Kevin Marvel Angela Speck Shadia Habbal Richard Fienberg
resource project Media and Technology
Citizen science engages members of the public in science. It advances the progress of science by involving more people and embracing new ideas. Recent projects use software and apps to do science more efficiently. However, existing citizen science software and databases are ad hoc, non-interoperable, non-standardized, and isolated, resulting in data and software siloes that hamper scientific advancement. This project will develop new software and integrate existing software, apps, and data for citizen science - allowing expanded discovery, appraisal, exploration, visualization, analysis, and reuse of software and data. Over the three phases, the software of two platforms, CitSci.org and CyberTracker, will be integrated and new software will be built to integrate and share additional software and data. The project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects such as those that monitor disease outbreaks, collect biodiversity data, monitor street potholes, track climate change, and any number of other possible topics more possible, efficient, and impactful through shared software.

The project will develop a cyber-enabled Framework for Advancing Buildable and Reusable Infrastructures for Citizen Science (Cyber-FABRICS) to elevate the reach and complexity of citizen science while adding value by mobilizing well-documented data to advance scientific research, meta-analyses, and decision support. Over the three phases of the project, the software of two platforms, CitSci.org and CyberTracker, will be integrated by developing APIs and reusable software libraries for these and other platforms to use to integrate and share data and software. Using participatory design and agile methods over four years, the project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science software and data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects and any number of other possible topics more possible, efficient, and impactful through shared software and data. Adoption of Cyber-FABRICS infrastructure, software, and services will allow anyone with an Internet or cellular connection, including those in remote, underserved, and international communities, to contribute to research and monitoring, either independently or as a team. This project is also being supported by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Gregory Newman Louis Liebenberg Stacy Lynn Melinda Laituri
resource research Media and Technology
This EAGER project sought to generate early knowledge for the museum field about the capabilities and limitations of an Indoor Positioning System to: 1) automate the collection of visitor movement data for museum research, and 2) enable location-aware applications designed to support museum visitor learning. Working with Qualcomm, Inc., the Exploratorium installed and experimented with an early prototype of a whole-museum, WiFi-based IPS that acquired and processed timestamped location data (latitude/longitude) from mobile test devices, similar to cell phones. The project 1) defined IPS ground
DATE:
TEAM MEMBERS: Joyce Ma Josh Gutwill William Meyer Claire Pillsbury Douglas Thistlewolf
resource project Media and Technology
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.

To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.

The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Sonja Latimore Marisa Wolsky Megan Silander Borgna Brunner
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Innovations in Development project will develop new knowledge about joint parent-child participation in science talk and practices using a 2nd screen app synced with a television program. "Splash! Ask-Me Adventures" is an app designed to work in conjunction with a marine science-focused television program for children 2-8 years old that will premier nationally on PBS Kids (Fall 2016). This free app will include a variety of "Conversation Catalysts" tied to the television episodes to help parents support children's science learning at home and in other venues such as aquariums and science centers. The project aims to support children's conceptual understanding of science concepts and practices, empower parents and caregivers to facilitate learning during media engagement, and contribute to the research literature on joint engagement with media. Collaborating project partners include The Jim Henson Company, Curious Media, SRI Education, and The Concord Consortium. Innovation in new methodology and instrumentation resulting from this project includes the creation of two new research tools to measure (1) families' discourse while engaging with media and (2)the impact of "Splash! Ask-Me Adventures" on children's science learning. Potential contributions to society-at-large are: (1)young learners will be better prepared to meet STEM curriculum milestones in school and scientific/technical challenges as adults; (2) parents will use new dialogic questioning skills to become more confident and active learning facilitators during media and non-media experiences with their children; (3) Conversation Catalysts, a new sub-genre of educational apps will emerge, based on proven theories of beneficial adult-child interaction and the impact of designed joint engagement with media on informal learning; and (4)a new generation will embrace marine stewardship.
DATE: -
TEAM MEMBERS: Stephanie Wise Savitha Moorthy Ximena Dominguez Phil Balisciano Celine Willard Carlin Llorente
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Using hand-held mobile devices this project would test specialized Signing Glossaries for Science Exhibits (SGSE). The glossaries are developed from 5000 unique signing terms specific to the science in 6 partner institutions and designed to reach families with at least one member, ages 5-12+, who is deaf or hard of hearing and uses American Sign Language (ASL) for communication. The project would demonstrate the potential effectiveness of the venue-specific signing glossaries to enhance access to STEM learning during visits to informal STEM learning environments such as aquariums, botanical gardens, natural history museums, nature centers, science museums, and zoos.

While utilizing existing domain specific signing terms, the project will adapt and improve on their use in content specific informal science venues to increase the opportunity for the target audience to both enjoy and benefit from the wide array of informal science learning opportunities available to this group. The research should reveal how this approach might benefit those with other types of disabilities. The research questions are designed to understand both how family members might interact with a hearing disabled family member as well as how the disabled individual might learn more about a variety of STEM content in a setting that is not domain specific but uses the influence of science exhibits to inform, engage and interest members of the public generally.

Domain specific signing dictionaries have been developed, many by this PI, to address access to content specific topics in STEM. This proposal extends this concept to informal learning environments that are content specific to increase the opportunity for those with hearing disabilities to increase their capability to both enjoy informal science learning venues and to understand more of what these venues provide in terms of science learning.
DATE: -
TEAM MEMBERS: Judy Vesel
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource project Websites, Mobile Apps, and Online Media
The Baltimore Symphony Orchestra (BSO), in collaboration with the Psychology Department of the University of Maryland Baltimore County (UMBC) and Octava (a technology company), are conducting a pilot exploratory research project to assess the effectiveness of delivering informal science learning (ISL) to adult audiences through live music in a concert hall environment. The first half of the study is being timed to coincide with the 2016 annual meeting in Baltimore of the League of American Orchestras. Audiences will be introduced to the core idea that symmetry is a central concept both in science and in music, and they will experience these ideas via the orchestral music of pieces such as Aaron Copland's Appalachian Spring and Beethoven's Symphony. No. 5. The project goals are: to test whether and the extent to which informal STEM learning can occur among adults (ages 18+) during live orchestral performances and how the science content may enhance the audience experience; and to develop assessment tools for measuring audience learning and retention of scientific concepts delivered in connection with live musical performances both through interactive technology and through traditional program notes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The pilot study will investigate the interaction of key variables related to the audience composition, the learning formats (use of app technology, program notes, or not), and the science concepts. The tablet application technology, under continued development by Octava, presents unobtrusive program notes that act as a concert companion in real time as a concert proceeds. The mixed methods research methodology will produce quantitative and qualitative data using pre- and post-test instruments and focus group interviews. A follow-up questionnaire will be sent to participants six weeks after the performances to ascertain whether what was learned was retained over a period of time. Dissemination of project findings will be to professionals in science, science education and music fields.
DATE: -
TEAM MEMBERS: Jessica Abel Linda Baker Tonya Robles Carol Bogash
resource evaluation Media and Technology
Roots of Wisdom (also known as Generations of Knowledge; NSF-DRL #1010559) is a project funded by the National Science Foundation that aims to engage Native and non-Native youth (ages 11-14) and their families in Traditional Ecological Knowledge (TEK) and western science within culturally relevant contexts that present both worldviews as valuable, complementary ways of knowing, understanding, and caring for the natural world. The Oregon Museum of Science and Industry (OMSI) and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI
DATE:
resource evaluation Media and Technology
Roots of Wisdom (also known as Generations of Knowledge) is a 5-year project funded by the National Science Foundation (NSF-DRL #1010559) in support of a cross-cultural reciprocal collaboration to develop a traveling exhibit, banner exhibit, and education resources that bring together Traditional Ecological Knowledge (TEK) and western science. The summative evaluation for public audience impacts was conducted by the Lifelong Learning Group (COSI, Columbus, OH), in collaboration with Native Pathways (Laguna, NM).
DATE:
resource research Media and Technology
The discovery of a class of galaxies called Green Peas provides an example of scientific work done by volunteers. This unique situation arose out of a science crowdsourcing website called Galaxy Zoo. It gave the ability to investigate the research process used by the volunteers. The volunteers’ process was analyzed in terms of three models of scientific research and an iterative work model to show the path to this discovery. As has been illustrated in these models of science, the path was iterative, not predetermined, and driven by empirical data. This paper gives a narrative of the 11-month
DATE:
TEAM MEMBERS: Miranda Straub