The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
Connecting Tennessee to the World Ocean is a three-year capacity building project of the Tennessee Aquarium and its partners, the Hamilton County Department of Education, Calvin Donaldson Environmental Science Academy, and NOAA's National Weather Service. Expanded capacity, in turn, allows the institution to reach a broader audience with a message connecting Tennessee's waterways to the world ocean. Primary project outcomes are increased ocean literacy and expanded ocean stewardship ethics in targeted Aquarium audiences. A series of specific activities focused on ocean literacy and global change make this possible, including expanding Aquarium classroom capacity by 60% to serve more students, expanded videoconferencing opportunities in partnership with NWS, free admission and programming for underrepresented students from across the region, expanded educational opportunities on the Aquarium s website, updated interpretive panels focusing on global change, installation of a NOAA WeatherBug station, a civic engagement series, and professional development for Aquarium educators.
This 2-year program will advance the way informal ocean science education institutions reach underserved/underrepresented families by facilitating and formalizing relationships between informal science education centers and community based organizations. Project teams in five New England communities will collaborate to create a practicable, outdoor ocean-science learning experience specifically designed for families in their shared service area. Building on a needs assessment produced through target-audience focus groups, the program will combine coastal field experiences with web-based interactive and participatory learning activities developed and tested by the Encyclopedia of Life (EOL; www.eol.org/) and the Northeast Regional Association for Coastal and Ocean Observing Systems (NERACOOS) to support in-field and ongoing learning. Science content will be informed and vetted by NOAA research scientists and work between the science centers and community organizations will be professionally facilitated. Formats and effectiveness will be evaluated by external evaluators and revised throughout the project.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.
The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE:
-
TEAM MEMBERS:
Geza GyukPamela GayChristopher LintottMichael RaddickLucy FortsonJohn Wallin
The Space Science Institute is developing an astronomy educational social game for the Facebook platform. The game uses the "sporadic play" model popular with many Facebook games, in which players take only a few actions at a time, then return to explore the results. Here players will create their own stars and planetary systems that evolve over time at a rate of a million years a minute. Players set systems in motion, revisiting the game over days or weeks to make new choices and alter strategies. The game is in effect an end-to-end solar system simulation, following a star from birth to death. As a result it encompasses a wide variety of core concepts in astronomy, including galactic structure, stellar evolution and lifecycles, planetary formation and evolution, and habitability and "habitable zones." The accompanying research program will examine the effectiveness of this type of game in informal education, and the effects of the social network on meeting the education goals, including viral spread, cooperative play, and discussions about the game and its underlying content in associated online forums.
This Broad Implementation media project (building upon prior NSF award 0639001) will address science literacy among Latinos via mass media, increasing the amount of Spanish-language science content available in the U.S., increasing the representation of Latino scientists in mainstream media, and expanding the knowledge base about Latino's interest and engagement in science. The STEM content will be based on the research conducted by the Hispanic scientists being interviewed and therefore includes a wide range of topics including astronomy, biology, physics, earth sciences, and engineering. The criteria for selecting the Hispanic researchers and the content is based on the importance of the research, how it is immediately relevant to a Latino audience, and how it draws on the indigenous knowledge system or ethnic pride for U.S. Latinos. Project deliverables include 150 audio-video interviews with Hispanic scientists distributed on both commercial Hispanic radio and TV stations, as well as public broadcasting and online. In addition to the broadcasts, social media tools such as Facebook and Twitter will be used to reach out and engage Hispanics. It is estimated that 300 Spanish-language radio stations will air the programs, resulting in 3 million radio impressions for each daily 60-second broadcast. Television broadcasts are estimated to result in another 2 million impressions per program. Project partners include the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS); V-Me, a national Hispanic educational channel; KLRN, the San Antonio, Texas public television station that will provide the national PBS distribution; and DaGama Web Studio that will develop and implement the social media marketing plan to attract and engage Latinos online. Comprehensive evaluations of project deliverables and impact will be conducted by Informal Learning Solutions (video-audio formative evaluations), and Knight-Williams Research (summative evaluation of project impact). The Summative Evaluation Plan will focus on the programs\' overall appeal, clarity, and effectiveness in meeting the two key audience objectives in the proposal: (1) increasing familiarity with and understanding of science concepts among U.S. Latinos, and (2) demonstrating engagement activities such as talking with friends/family about the presented topics, and/or seeking out additional information. It will furthermore assess the extent to which listeners and viewers find the Hispanic researchers featured in the programs to be effective communicators and the importance they assign to hearing from Hispanic researchers themselves. It will look at whether and how the programs are effective selecting topics with immediate relevance to listeners'/viewers' everyday lives. Finally, the evaluation will gather information about listeners'/viewers' demographic and background characteristics, including their country of origin, degree of fluency in Spanish, reasons for preferring Spanish media, number of generations in the U.S., reasons for tuning into the programming, efforts to recommend the programs to others, and the likelihood of continuing to listen to or view the programs in the future.
The ScienceMakers: African Americans and Scientific Innovation is a three-year project designed to increase awareness of the contributions of African American scientists, raise awareness of STEM careers, and increase understanding of STEM concepts through the creation of education, media, and career resources. The project team is supplemented with an extensive advisory board of STEM education, museum, and community professionals, as well as representatives from partnering science centers. Project partners include the St. Louis Science Center, Liberty Science Center, New York Hall of Science, Pacific Science Center, Franklin Institute, COSI Columbus, Lawrence Hall of Science, SciWorks, Detroit Science Center, and MOSI Chicago. Additional collaborators include middle and high schools with high minority populations. Project deliverables include a fully accessible multi-media archive of video oral histories of 180 African American scientists and web resources and contests utilizing Web 2.0 and 3.0 applications such as social networking tools that foster engagement and build community around the ScienceMakers. Public programs for youth and adults at science museums, after-school programs, and community organizations highlight African American contributors, and encourage interest in science and science careers and the ScienceMakers DVD Toolkit expand the reach of this innovative project. Intended impacts for youth and adults consist of increased awareness of STEM concepts and career options, exposure to African American scientists, awareness of the contributions of minority scientists, and 21st century skills. Intended impacts on professional audiences include increased awareness and understanding of STEM careers and workforce diversity, 21st century skills, and STEM career options. The project evaluation, conducted by Knight-Williams Research Communications, utilizes a mixed-methods approach. The evaluation assesses the impact of the oral history archive, public programs, and other deliverables on public and professional audiences' knowledge, interest, and awareness of the contributions of African American scientists, STEM concepts, and STEM careers. The evaluation also includes an ethnography which examines factors that contribute to success in STEM careers by African-American scientists. The ScienceMakers significantly expands the world\'s largest searchable oral history archive and may have an enduring impact on research and practice in the field of informal science education. The project has the potential to enrich programs and exhibits, while raising awareness of the contributions of African-American scientists among informal science education professionals and the general public.
The purpose of the ETOM project is to develop a "user's guide" to the present and projected energy resources of our planet and the relationship to climate change. It will prototype and evaluate new ways of providing the public with the information and online tools to make wiser choices about powering homes, schools, businesses, and communities. The project uses a hybrid model of science communication that includes video, in-person presentations, and Web 2.0 social networking. National PBS broadcasts of three hour long programs, with two new specials premiering on Earth Day 2012, will reach large audiences influencing the understanding of climate change and the potential of renewable energy in measurable ways. Events at four science centers and natural history museums located across the country will explore how increased knowledge of Earth Science through in-person presentations informs behavior. The project's social networking tools and resources will motivate and support accessible real-world activities. An online "Energy Gauge" will allows users to find rebates, explore driving and diet, and make choices that can save money and reduce carbon emissions. The core project team includes Richard Alley, chair of the National Academy of Sciences panel on Abrupt Climate Change, who will host the television programs. Outreach partners include science centers across the nation and the Society for the Advancement of Chicanos and Native Americans in Science. The project will leverage existing NSF-supported projects such as the Future Earth Initiative led by the Science Museum of Minnesota. Rockman Et Al will evaluate the project impacts working from front-end to summative stages to understand the reactions of media, online, and on-site users. Proposed project impacts include increasing participants' understanding of how the Earth's system is affected by human uses of energy and the impact of those energy uses on climate. Other impacts include changes in attitude and behavior affecting individual uses of energy. Evaluations will be conducted with TV show viewers as well as science center and website visitors using quasi-experimental, quantitative, and qualitative study designs.
The Space Science Institute, in collaboration with the Catawba Science Center (North Carolina), the New Mexico Museum of Natural History and Science, the American Library Association, and the Astronomical Society of the Pacific propose to develop a multi-pronged project on the topic of asteroids. Content areas will include: Asteroids ? Up-close and Personal; Deep Impact; and Planetary Protection. Deliverables will include a 2,500 square-foot traveling exhibit for small to mid-sized museums; four, 300 square-foot "small exhibit components" (SECs) for libraries, community centers, etc.; Web 2.0 sites for the project developers and for the public; public education programs; professional development programs for informal STEM professionals; and a study of how Web 2.0 can be used to improve the evaluation of Web sites. The project team will be experimenting with virtual prototyping of exhibit modules as a way to improve exhibit development, especially with team members who are around the country. Teens from around the country will be enlisted to help inform the project on its deliverables. The Association of Science-Technology Centers will manage the exhibit tour. The Institute for Learning Innovation will conduct the evaluation activities, including the study of Web 2.0 and virtual prototyping tasks.
The Science Museum of Minnesota, in collaboration with six NSF-funded Science and Technology Centers (STCs) around the country, is developing several deliverables around the theme of the Anthropocene; that is, the idea that Earth has entered a new geologic epoch in which humanity is the dominant agent of global change. Deliverables include: (1) a 3,500 square-foot exhibit with object theater at the museum; (2) an Earth Buzz Web site that focuses on global change topics equivalent in design intent to the museum's popular current science Science Buzz website; (3) kiosks with Earth Buzz experiences installed in selected public venues; (4) Public programs with decision makers and opinion leaders on the implications of a human-dominated planet; and (5) youth programs and activities that engage them with the exhibit, web site, and careers in STEM. The exhibits and Web site will feature scientific visualizations and computational models adapted to public learning environments from research work being conducted by STCs and other academic research partners. First-person narrative videos of scientists and their research produced by Twin Cities Public Television now are on display in the Future Earth exhibit and also have been packaged into a half-hour program for broadcast statewide. The intended strategic impact on the field of informal STEM education is twofold: (1) explore how to accelerate the dissemination of scientific research to public audiences; (2) investigate ways science centers/museums can serve as forums for public policy dialogues.
The purpose of this Communicating Research to Public Audiences project is to develop a suite of media products to raise awareness about global-warming-induced sea level rise and how scientists study it. The project will focus on Dr. Maureen Raymo's NSF funded research which looks to the Pliocene era thought to be the most recent time in geologic history with a concentration of CO2 in the atmosphere with levels as high as today. The multimedia materials including video footage, photographic images, and audio recordings will be widely distributed on the internet, on kiosks in science centers, and through podcasts. Collaborations with numerous organizations will ensure widespread dissemination of the multimedia materials. Some of the collaborators include Climate Central, a new nonprofit science and media organization; Encyclopedia of Earth, a peer-review, open access electronic reference about the Earth; and Audubon magazine among others. The project will also disseminate its resources through organizations and websites that reach teachers and students in classrooms. Rockman Et Al will evaluate the project impacts conducting both formative and summative evaluations. Focus groups and online surveys will be conducted at various stages providing feedback to the project team as well as a summative evaluation of audience impacts.
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.