This report combines the views of education researchers, technology developers, educators, and researchers in emerging fields such as educational data mining and technology-supported evidence-centered design to present an expanded view of approaches to evidence. It presents the case for why the transition to digital learning warrants a re-examination of how we think about educational evidence. The report describes approaches to evidence-gathering that capitalize on digital learning data and draws implications for policy, education practice, and R&D funding.
DATE:
TEAM MEMBERS:
U.S. Department of EducationOffice of Educational Technology
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
This CRPA project produced a human-like avatar exhibit for the Orlando Science Center that verbally communicates with middle and high school grade visitors, engaging them in the subjects of computer science, artificial intelligence, and engineering. Human-like characteristics include features to match the demographics of the Center's clientele and verbal communication in the English language. In addition to discussing how avatars are developed and how artificial intelligence works, the avatar image will answer questions from the visitors on selected topics, including subjects from the media models of Avatar and IBM's Watson event on Jeopardy. Considerable planning and research has gone into this project to make sure that the avatar is life-like and can engage in realistic dialog. The avatar images will resemble real individuals who have diverse demographic characteristics in order to enhance the human-computer interface. The system is designed to deal with background noise and antagonistic visitors. Evaluation at all levels (front-end, formative, and summative) will make the exhibit most effective and facilitate the goals of the project which are to inform the target audience on STEM subjects. The desire to have electronic analogs of humans has been a goal for half of a century. This project builds on prior research in this area and is one of the most sophisticated contemporary models in the field. It is anticipated that this work may contribute to future applications in education and assistance for individuals with disabilities. Moreover, engagement with the avatar may ignite curiosity among young visitors and stimulate interest in science careers.
The overarching purpose of the Climate Literacy Zoo Education Network is to develop and evaluate a new approach to climate change education that connects zoo visitors to polar animals currently endangered by climate change, leveraging the associative and affective pathways known to dominate decision-making. Utilizing a polar theme, the partnership brings together a strong multidisciplinary team that includes the Chicago Zoological Society of Brookfield, IL, leading a geographically distributed consortium of nine partners: Columbus Zoo & Aquarium, OH; Como Zoo & Conservatory, St. Paul, MN; Indianapolis Zoo, IN; Louisville Zoological Garden, KY; Oregon Zoo, Portland, OR; Pittsburgh Zoo & PPG Aquarium, PA; Roger Williams Park Zoo, Providence, RI; Toledo Zoological Gardens, OH, and the organization Polar Bears International. The partnership leadership includes the Learning Sciences Research Institute at the University of Illinois at Chicago, and the Earth System Science Center at Pennsylvania State University. The partnership is joined by experts in conservation psychology and an external advisory board. The primary stakeholders are the diverse 13 million annual visitors to the nine partner zoos. Additional stakeholders include zoo docents, interpreters and educators, as well as the partnership technical team in the fields of learning innovations, technological tools, research review and education practice. The core goals of the planning phase are to a) develop and extend the strong multidisciplinary partnership, b) conduct research needed to understand the preconceptions, attitudes, beliefs, and learning modes of zoo visitors regarding climate change; and c) identify and prototype innovative learning environments and tools. Internal and external evaluations will be conducted by Facet Innovations of Seattle, WA. Activities to achieve these goals include assessments and stakeholder workshops to inventory potential resources at zoos; surveys of zoo visitors to examine demographic, socioeconomic, and technology access parameters of zoo visitors and their existing opinions; and initial development and testing of participatory, experiential activities and technological tools to facilitate learning about the complex system principles underlying the climate system. The long-term vision centers on the development of a network of U.S. zoos, in partnership with climate change domain scientists, learning scientists, conservation psychologists, and other stakeholders, serving as a sustainable infrastructure to investigate strategies designed to foster changes in public attitudes, understandings, and behavior surrounding climate change.
The authors provide an analysis of pairs of children interacting with a multi-touch tabletop exhibit designed to help museum visitors learn about evolution and the tree of life. The exhibit’s aim is to inspire visitors with a sense of wonder at life’s diversity while providing insight into key evolutionary concepts such as common descent. The authors find that children negotiate their interaction with the exhibit in a variety of ways including reactive, articulated, and contemplated exploration. These strategies in turn influence the ways in which children make meaning through their
Do video games have positive impacts on the academic K–12 curriculum? The authors of this paper conducted a literature review of more than 300 research articles on the use of video games in the classroom. Their analysis found minimal evidence that video games have positive effects on mathematics and science learning.
PlanetMania is an iOS and Android mobile app game produced by Maryland Science Center and Eduweb, Inc. in 2012 to accompany the Center's latest permanent exhibit, entitled Life Beyond Earth. Multimedia Research carried out a summative evaluation of the PlanetMania app, focusing on the app's usage in the exhibit, appeal, value and learning outcomes. The evaluation is a pre-post quasi-experimental study in which a sample of 24 9-11 year olds were interviewed prior to and after experiencing the app and exhibit as well as observed during their exposure to the app and exhibit. The app game combines
The purpose of this front-end evaluation study was to inform design decisions about the development of an interactive learning system focusing on Earth and planetary science. The design team was led by the Institute for Scientific Research (ISR), and the project was funded by the National Science Foundation (NSF). The aim of the Advancing Content Through Interactive Virtual Environments (ACTIVE) Project is to create an interactive learning environment that allows exploration of the solar system through several senses including touch, sound, and sight. Developers will incorporate NASA Earth and
DATE:
TEAM MEMBERS:
Carey TisdalThe West Virginia High Technology Consortium Foundation
A research study was conducted to help inform UC Davis's Tahoe Environmental Research Center (TERC) about the greater Lake Tahoe area community's perceived value of the center and two 3D visualizations included as part of their guided tour of the center. Research questions focused on how various local groups perceived the center, how TERC can better engage locals and tourists alike, the potential for the current 3D visualizations (Lake Tahoe, Earthquakes) for impacting attitudes and behaviors about the Lake and how the Lake Tahoe 3D visualization impacted middle school students during a school
The Cryptoclub: Cryptography and Mathematics Afterschool and Online is a five-year project designed to introduce middle school students across the country to cryptography and mathematics. Project partners include the Young Peoples Project (YPP), the Museum of Science and Industry in Chicago, and Eduweb, an award-winning educational software design and development firm. The intended impacts on youth are to improve knowledge and interest in cryptography, increase skills in mathematics, and improve attitudes towards mathematics. The secondary audience is leaders in afterschool programs who will gain an increased awareness of cryptography as a tool for teaching mathematics and adopt the program for use in their afterschool programs. Project deliverables include online activities, online cryptography adventure games, interactive offline games, a leader\'s manual, and training workshops for afterschool leaders. The project materials will be developed in collaboration with YPP staff and pilot tested in Year 3 at local afterschool programs and YPP sites in Chicago in addition to four national sites. Field testing and dissemination occurs in Year 4 at both local sites in Chicago and national locations such as afterschool programs, science centers, and community programs. Six 3-day training workshops will be provided (2 per year in Years 3-5) to train afterschool leaders. It is anticipated that this project will reach up to 11,000 youth, including underserved youth in urban settings, and 275 professional staff. Strategic impact resulting from this project includes increased awareness of cryptography as a STEM topic with connections to mathematics as well a greater understanding of effective strategies for integrating and supporting web-based and offline activities within informal learning settings. The Cryptoclub project has the potential to have a transformative impact on youth and their understanding of cryptography and may serve as a national model for partnerships between afterschool and mentoring programs.
DATE:
-
TEAM MEMBERS:
Janet BeissingerSusan GoldmanDaria TsoupikovaBonnine Saunders
The New York Hall of Science, in collaboration with the Tufts Center for Engineering Education, the Learning Games Network, and New York City departments of education and of parks and recreation, is creating and testing two innovative science games to support student learning about frictional force and linear motion. SciGames integrates rigorous, highly motivating, data collection activities conducted in museum and playground settings, with in-depth data analysis and additional scientific investigation in the classroom. The primary goals of the SciGames project are to increase student motivation and interest in science and improve student learning about core physical science concepts. This exploratory project targets underrepresented urban students and their teachers from 20 schools in New York City (NYC) and through its partnership with NYC department of parks and recreation has great potential for scale-up throughout NYC, as well as dissemination to other urban communities. The SciGames model creates experiences for students that build on the positive, fun, free-choice learning characteristics of informal settings; promotes learning through repeated game-like experimentation and play; and supports students' sustained interest and learning in science classrooms where core concepts are formalized. The project is based on four design principles: (1) SciGames turns students' informal experiences into a game, (2) SciGames makes science content an integral part of game play, (3) SciGames generates data for further analysis during game play, and (4) SciGames, through the use of digital apps, supports students inquiring into data back in their classrooms. Researchers are developing the games using rigorous, well constructed, iterative cycles of design, development, testing, evaluation, and revision with different groups of NYC students and teachers. Pre and post data on students\' science learning and affect are being used to inform the design cycles. Over a two-year period, SciGames will produce two science games and associated digital apps, and a portable kit that supports game implementation, data collection and analysis. SciGames is an important experiment, combining the informal, engaging aspects of play with more formal science investigation to encourage and sustain the interest, participation, and learning of underrepresented students in STEM. This project has the potential to transform how we think of and structure science learning for middle school students.
Video games have been heralded as models of technology-enhanced learning environments as they exemplify many of the ideas emerging from contemporary learning sciences research. In particular, such games promote learning through goal-directed action in simulated environments, through producing as well as consuming information, embedded assessments, and through participation in self-organizing learning systems. Research suggests that participation in such environments involves many forms of scientific thinking and may lead to increased civic engagement, although to date, there are few examples of game-based learning environments that capitalize on these affordances. This project will investigate the potential of online role playing games for scientific literacy through the iterative design and research of Saving Lake Wingra, an online role playing game around a controversial development project in an urban area. Saving Lake Wingra positions players as ecologists, department of natural resources officials, or journalists investigating a rash of health problems at a local lake, and then creating and debating solutions. Players will solve challenges within an interactive, simulated lake ecosystem as they attempt to save the lake, working for one of several constituencies. This design-based research project will span the full life cycle of a project, from case studies of learning in small, constrained settings to controlled experimental studies of games implemented across classrooms. In addition to asking if participation in scientific role-playing games can produce robust conceptual understandings, it will also examine if role playing games might serve as assessment tools for comprehending scientific texts, assessing conceptual understandings within scientific domains, and designing innovative solutions to environmental problems that draw upon scientific understandings. The education plan includes the production of game-based media that can be used to support a variety of research studies, an online professional development community of educators using games for learning, support for graduate students trained in game theory, the learning sciences, and new forms of assessment, and new courses in game-based learning and assessment.