ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
"Birds in the Hood" or "Aves del Barrio" builds on the Cornell Laboratory of Ornithology's (CLO) successful Project Pigeon Watch, and will result in the creation of a web-based citizen science program for urban residents. The primary target audience is urban youth, with an emphasis on those participating in programs at science centers and educational organizations in Philadelphia, Tampa, Milwaukee, Los Angeles, Chicago and New York. Participants will develop science process skills, improve their understanding of scientific processes and design research projects while collecting, submitting and retrieving data on birds found in urban habitats. The three project options include a.) mapping of pigeon and dove habitats and sightings, b.) identifying and counting gulls and c.) recording habitat and bird count data for birds in the local community. Birds in the Hood will support CLO's Urban Bird Studies initiative by contributing data on population, community and landscape level effects on birds. Support materials are web-based, bilingual and include downloadable instructions, tally sheets, exercises and results. The website will also include a web-based magazine with project results and participant contributions. A training video and full color identification posters will also be produced. The program will be piloted at five sites in year one, and then field-tested at 13 sites in year two. Regional dissemination and training will occur in year three. It is anticipated that 5,000 urban bird study groups will be in place by the end of the funding period, representing nearly 50,000 individuals.
DATE:
-
TEAM MEMBERS:
Rick BonneyJohn FitzpatrickMelinda LaBranche
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
Quarked!™ is a collaborative physics education project at the University of Kansas that provides engaging and educational science experiences for youth ages 7 and up, educators and the general public. This multimedia project material focuses on concepts of scale and matter, and presents subatomic particles as relatable characters in both human and quark or electron form that explore science through story-driven adventures. It includes a comprehensive website with a range of materials including animated videos, games, apps, FAQs and lesson plans, as well as hands-on education programs at the University of Kansas Natural History Museum. Initially, funded through an NSF EPSCoR grant (Grant No. EPS-0236913 and matching support from the State of Kansas through the Kansas Technology Enterprise Corporation and EPP-0354836), this projects continued to grow and new resources have been added through funding from the Kauffman Foundation, Google grants and other NSF awards. Quarked.org attracts more than 75,000 unique visitors annually, local PBS television stations in Kansas and Missouri broadcast the 3D animated videos, and the museum programs have reached more than than 5,000 school participants and continue to be offered.
Partnering with National Musical Arts, the Science Museum of Minnesota seeks to develop BioMusic, a 4,000 sq. ft. traveling exhibition that explores the origins of music in nature and the connections between music and sound of living things. This project is based on planning grant ESI-0211611 (The Music of Nature and the Nature of Music) awarded to NMA. The project is based on the emerging interdisciplinary research field of biomusic, which includes musicology plus aspects of neuroscience, biology, zoology, environmental science, physics, psychology, math and anthropology. The exhibit sections -- "Humanimal" Music; Natural Symphonies; Ancient Roots; Music, Body and Mind; and World of Music -- use both music and natural sound to explore biodiversity, cultural diversity, the physics of sound and the brain. BROADER IMPACT: The exhibition is expected to travel for at least six years, reaching some two million people in 18 communities. It is to be accompanied by a six-part radio series (Sweet Bird Classics) for young children. Because of the connection to music and many other areas of public interest, this exhibition has the potential to attract and engage new audiences to science museums and stimulate their interest in STEM.
SoundVision Productions is developing and distributing a series of ten, hour-long public radio documentaries that will explore the turbulent boundary between science and the humanities, capturing the present moment of tremendous scientific and scholarly ferment with the unique and intimate power of radio. By introducing the radio audience to the thoughts and voices of some of the world\'s most accomplished scientists, in conversations with the counterparts in the humanities, the series will look at recent developments in science including physics, molecular and cell biology, environmental science, cognitive psychology and neuroscience, and the multiple disciplines of the life sciences reflecting the increasingly subtle and widespread application of evolutionary theory. In each program, a careful account of new scientific ideas and discoveries will be placed within the context of historical and contemporary thought about the human and natural worlds. Barinetta Scott, the Executive Producer, has most recently been the Executive Producer for the highly regarded NSF funded NPR series, "The DNA Files." In developing this project, she will work closely with an advisory committee that includes: John Avise, Research Professor, Dept. of Genetics, University of Georgia Samuel Barondes, Professor and Director of the University of California San Francisco\'s Center for Neurobiology and Psychiatry Terrence Deacon, Associate Professor of Anthropology, Boston University Anne Foerst, Professor of Computer Science and Theology, St. Bonaventure University Ursula Goodenough, Dept. of Biology, Washington University, St. Louis William Irons, Professor of Anthropology, Northwestern University Gordon Kane, Professor of Physics, University of Michigan Jim Miller, Senior Program Associate for the AAAS Program of Dialogue Between Science and Religion W. Mark Richardson, Episcopal Priest, Associate Professor of Systematic Theology, General Theological Seminary Holmes Rolston, University Distinguished Professor in the Department of Philosophy, Colorado State University Michael Ruse, Professor of the Philosophy of Biology and Ethics, at Florida State University Mary Evelyn Tucker, Professor of Religion at Bucknell University Dorothy Wertz, Senior Scientist; Social Science, Ethics, and the Law; The Shriver Center.
Two 8 to 10 week modules, one focusing on cells and the other on reproduction and heredity, serve as the basis for the development of a comprehensive, assessment-driven, middle school science curriculum called "Science for Today and Tomorrow." A curriculum frramework is developed for Life and Physical Sciences to be taught in Grades 6 and 7 and Earth Science in Grade 8. The research-based materials assist students to develop a working knowledge of a core set of ideas that are fundamental to the discipline and ultimately to see how the concepts span the disciplines. The student materials and the teachers' guides are enhanced with classroom-tested assessments and web-based content resources, simulations and tools for gathering and interpreting data. On-line professional development materials allow teachers to gain content knowledge and pedagogical skills. The website also contains an area that provides information for administrators including strategies for supporting teachers and another area for community members to involve them in the students' science learning. The project builds upon the lessons learned in previous materials development projects at TERC.
The American Anthropological Association will develop a 5,000-sq. ft. traveling exhibit, website and educational materials on "Understanding Race and Human Variation." Through an integrated, comprehensive and learner-focused educational program, visitors will be presented with the idea that human variation is part of nature and that race is a dynamic and sometimes harmful cultural construct. The project will advance knowledge across the sciences by bringing together scientists and scholars in translating research to the public and developing a common language.
Independent Production Fund is producing a three-part public television series focusing on the latest research in the science of music. The programs will explore how cutting-edge science is revealing new connections between music and the human mind and body, the natural world and the cosmos. The series will follow researchers from a variety of fields including physiology, neuroscience, psychology, biology, physics and education, as they use groundbreaking techniques and technologies to unravel age-old mysteries about music's persistence, universality and emotional power. It will show how these researchers are shedding valuable new light on the way brains work. The impact of the programs will be extended through a content-rich companion web site and innovative formal and informal educational-outreach materials to both middle and high school age students, as well as a complementary radio component. Mannes Productions will produce the series; Goodman Research Group will conduct formative evaluation and Rockman et al will conduct summative evaluation.
Thirteen/WNET New York will develop and produce ten new episodes for a fourth season of "Cyberchase." Now in its third production season and second year of daily PBS broadcast, "Cyberchase" has helped millions of children acquire a stronger foundation in mathematics. The new programs will enrich the series' content by emphasizing science-mathematics connections and financial literacy. Ancillary materials, outreach and a highly popular Website extend the learning and help make "Cyberchase" the sole mathematics media project available for young audiences. Plans for season four include enhancing the Website, building the inventory of multi-media outreach activities, strengthening the show's presence in after-school programs and launching a new relationship with the museum community.
DATE:
-
TEAM MEMBERS:
Sandra SheppardCarey BolsterMichael TempletonBarbara Flagg
Kikim Media requests $743,316 to produce four half-hour television documentaries and associated outreach programs based on Michael Pollan's best-selling book, The Botany of Desire. The project explores the reciprocal nature of people's relationship with plants. The programs focus on the connections between apples and the human desire for sweetness; tulips and the desire for beauty; marijuana and the desire for intoxication; and corn and our desire for control over nature. The project will increase public understanding of diverse subjects including genetics, evolution, cognition and biochemistry as well as biodiversity, genetic diversity and the consequences of their loss. The project will have a broad impact through a national primetime PBS broadcast, an outreach program targeting adult audiences, and an educational module delivering appropriate content (excluding intoxication) to middle and high school audiences. Knight-Williams Research Communications will conduct the evaluation for The Botany of Desire television broadcast and outreach efforts.
The Chedd-Angier Production Company requests a planning grant to develop a popular new television series together with integrated outreach and online components. The series, "Science Out There" (working title), will feature the work of field scientists as it happens and where it happens, anywhere in the world. The target audience for the series is the young, adventure-seeking adult. The work of the development phase of the project includes refining the creative approaches to the series; producing a ten-minute demonstration tape; developing a list of suitable research projects for the series; developing a business strategy and conducting formative evaluation of the pilot. An advisory group and Connecticut Public Television will support the planning work. Multimedia Research will conduct the evaluation.