This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).
The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).
There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
The purpose of the ETOM project is to develop a "user's guide" to the present and projected energy resources of our planet and the relationship to climate change. It will prototype and evaluate new ways of providing the public with the information and online tools to make wiser choices about powering homes, schools, businesses, and communities. The project uses a hybrid model of science communication that includes video, in-person presentations, and Web 2.0 social networking. National PBS broadcasts of three hour long programs, with two new specials premiering on Earth Day 2012, will reach large audiences influencing the understanding of climate change and the potential of renewable energy in measurable ways. Events at four science centers and natural history museums located across the country will explore how increased knowledge of Earth Science through in-person presentations informs behavior. The project's social networking tools and resources will motivate and support accessible real-world activities. An online "Energy Gauge" will allows users to find rebates, explore driving and diet, and make choices that can save money and reduce carbon emissions. The core project team includes Richard Alley, chair of the National Academy of Sciences panel on Abrupt Climate Change, who will host the television programs. Outreach partners include science centers across the nation and the Society for the Advancement of Chicanos and Native Americans in Science. The project will leverage existing NSF-supported projects such as the Future Earth Initiative led by the Science Museum of Minnesota. Rockman Et Al will evaluate the project impacts working from front-end to summative stages to understand the reactions of media, online, and on-site users. Proposed project impacts include increasing participants' understanding of how the Earth's system is affected by human uses of energy and the impact of those energy uses on climate. Other impacts include changes in attitude and behavior affecting individual uses of energy. Evaluations will be conducted with TV show viewers as well as science center and website visitors using quasi-experimental, quantitative, and qualitative study designs.
The Space Science Institute, in collaboration with the Catawba Science Center (North Carolina), the New Mexico Museum of Natural History and Science, the American Library Association, and the Astronomical Society of the Pacific propose to develop a multi-pronged project on the topic of asteroids. Content areas will include: Asteroids ? Up-close and Personal; Deep Impact; and Planetary Protection. Deliverables will include a 2,500 square-foot traveling exhibit for small to mid-sized museums; four, 300 square-foot "small exhibit components" (SECs) for libraries, community centers, etc.; Web 2.0 sites for the project developers and for the public; public education programs; professional development programs for informal STEM professionals; and a study of how Web 2.0 can be used to improve the evaluation of Web sites. The project team will be experimenting with virtual prototyping of exhibit modules as a way to improve exhibit development, especially with team members who are around the country. Teens from around the country will be enlisted to help inform the project on its deliverables. The Association of Science-Technology Centers will manage the exhibit tour. The Institute for Learning Innovation will conduct the evaluation activities, including the study of Web 2.0 and virtual prototyping tasks.
The Science Museum of Minnesota, in collaboration with six NSF-funded Science and Technology Centers (STCs) around the country, is developing several deliverables around the theme of the Anthropocene; that is, the idea that Earth has entered a new geologic epoch in which humanity is the dominant agent of global change. Deliverables include: (1) a 3,500 square-foot exhibit with object theater at the museum; (2) an Earth Buzz Web site that focuses on global change topics equivalent in design intent to the museum's popular current science Science Buzz website; (3) kiosks with Earth Buzz experiences installed in selected public venues; (4) Public programs with decision makers and opinion leaders on the implications of a human-dominated planet; and (5) youth programs and activities that engage them with the exhibit, web site, and careers in STEM. The exhibits and Web site will feature scientific visualizations and computational models adapted to public learning environments from research work being conducted by STCs and other academic research partners. First-person narrative videos of scientists and their research produced by Twin Cities Public Television now are on display in the Future Earth exhibit and also have been packaged into a half-hour program for broadcast statewide. The intended strategic impact on the field of informal STEM education is twofold: (1) explore how to accelerate the dissemination of scientific research to public audiences; (2) investigate ways science centers/museums can serve as forums for public policy dialogues.
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
The Dynamic Earth: You Have To See it To Believe It is a public exhibition and suite of programming designed to educate and excite K-8 students, teachers, and families about weather and climate science, plate tectonics, erosion, and stream formation. The Dynamic Earth program draws attention to the importance of large-scale earth processes and the human impacts on these processes, utilizing real artifacts, hands-on models, and NASA earth imagery and data. The program includes the exhibition, student workshops, family workshops, annual professional development opportunities for classroom teachers, innovative theater shows, lectures for adults by visiting scientists, and interpretive activities. The Montshire Museum of Science has partnered with Chabot Space and Science Center (CA) and the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (NH) on various components. The project has broadened our internal capacity for providing quality earth science programming by greatly expanding our program titles and allowing us to create hands-on materials for use by our educators and to loan to schools in our Partnership Initiative. Programming developed during the grant period continues to reach thousands of students and teachers each year, both on-site and as part of our rural outreach efforts.
The Iowa Children’s Museum designed and built a new aviation exhibit, Take Flight: The Science of Aviation, that delivers NASA’s Informal Education Program to the public by providing high-quality active learning experiences for children and their families outside the formal school classroom setting. This exhibit is a vehicle through which NASA and the Museum build public understanding of the key science, technology, engineering, and math disciplines that make it possible for humans to safely fly through the atmosphere.
The Museum has developed the following products/deliverables to support our project goals.
1. Created a comprehensive Take Flight! Exhibit Guide will be developed for three different types of users: Adult and Child Museum Visitors, Educators, and Museum Staff
2. Created revised curriculum for a week-long Summer Day Camp Aeronautics program and girl and boy scout programs
3. Created additional “Fun-tivities” themed around aviation for general public
Partners include University of Iowa Science Education Center, University of Iowa Delta Center for Brain Development , University of Iowa Women in Engineering, University of Iowa Engineering School, Iowa State University Extension, Grantwood Area Education Agency, 21st Century After School Program, Iowa After School Alliance, Mississippi Valley Girl Scouts, Boy Scouts of America, Iowa City and Cedar Rapids Community School Districts, and STEM Regional Networks of Iowa.
The primary purpose of the STARS: Strengthening Teaching, Awareness and Resources in Science project from the Challenger Learning Center of the San Joaquin Valley is to build upon the CLC's resources and partnership in order to maximize the impact of informal science education in creating a STEM pipeline for the San Joaquin Valley region. The goals are to promote lifelong learning among the general public regarding STEM fields and NASA's contribution to American society through a series of high-profile community events, strengthen K-12 partnerships to ensure the long-term utilization of the CLC as a STEM education resource, and further develop the CLC's partnership with the University of California Merced to ensure continuity of the STEM pipeline from K-12 to higher education, integrating informal science education to inspire students to pursue STEM learning throughout this progression.
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
Mission to Mars engages 6th-8th grade students in the science, engineering and careers related to Mars exploration. The program is led by the Museum of Science and Industry, Chicago, and includes as partners Challenger Learning Centers in Woodstock, IL, Normal IL and three NASA Centers (Jet Propulsion Laboratory, Marshall Space Flight Center, and Johnson Space Center). The project aims to:
Link, via videoconference, urban and rural middle school students from low income communities in an exploration of space science
Develop and launch programs that showcase NASA Center research
Enrich middle school curricula and promote learning about NASA’s space missions with experiences that inspire youth to pursue in NASA-related STEM careers.
Programs and products produced include:
3 videoconference program scenarios that highlight research being conducted at NASA Centers
Pre- and post-event curriculum materials designed for middle school classrooms
Teacher professional development workshops
Communication support for NASA professionals
iPad apps utilized during the program
Since the program launched five years ago, Mission to Mars has served 7,676 students. MSI seeks to provide opportunities for all learners, and works to remove barriers to participation in high-quality science learning experiences. Mission to Mars allows MSI to engage more Chicago Public Schools (where 86% of students are economically disadvantaged) in real and relevant science experiences that may lead to STEM careers.
As MSI’s CP4SMP grant comes to an end, the Museum has committed to continued delivery of the program through 2 Mission to Mars Learning Labs, offered to 6-8th grade school groups visiting on field trips. Live videoconferencing with JPL and Johnson will occur during roughly half of the sessions. Our Challenger Learning Center partners will integrate Mission to Mars activities, materials and iPad apps into their own Mars-themed programs. Together these efforts extend the transformative hands-on science experiences developed under the Mission to Mars grant to a whole new audience of middle school students and teachers.
The Denver Museum of Nature & Science (DMNS) CP4SMP program, Methods of Increasing Awareness of Comparative Planetology and Climate Science with Science On a Sphere in Museum Settings, intended to educate our audiences about planetary exploration missions, illuminate climate science through comparative planetology, and produce new educational materials, interpretation techniques, and knowledge that facilitate more effective informal education on these themes nationally. DMNS was the lead organization on this program, but collaborated closely with other institutions involved in the Science on a Sphere® (SOS) user community. This program achieved its intentions to: (1) boost literacy in climate science, (2) build awareness of NASA’s space science missions and the relevance of NASA Earth observing satellites to contemporary issues of global change, and (3) evaluate the effectiveness of different modes of employing the SOS system with diverse audiences. We capitalized on our unique combination of scientific expertise in planetary science and spacecraft exploration, our considerable experience in digital media development, informal science education, exhibit design, educational research, and museum evaluation. Over the duration of the project we: (1) developed visually exciting and compelling SOS programming on comparative planetology and climate science using NASA mission data; (2) tested different modes of presentation of SOS to determine how this technology can be best utilized in informal science contexts; (3) investigated how visitors perceive and understand scientific data presented on SOS; and (4) created teacher professional development workshops to reach K-12 formal educators both locally and nationally. The DMNS CP4SMP NASA grant created opportunities to positively impact climate literacy for millions of DMNS visitors over the five-year period.
DATE:
-
TEAM MEMBERS:
Scott SampsonSteve LeeKa Chun YuEddie GoldsteinAndrea Giron