Skip to main content

Community Repository Search Results

resource project Media and Technology
The overall goal of this project is to further develop and test one high-potential current health science research dissemination strategy initially prototyped as part of the SEPA Phase I development of the Museum of Science-s Current Science & Technology Center: updateable interactive digital multimedia displays on current research that can be networked to multiple locations, including science museums, libraries, and student centers. This SEPA project aims to broadly disseminate learning resources on nanomedicine research, capitalizing on the momentum provided by the new NSF-funded Nanoscale Informal Science Education Network (NISE Net), also headquartered at the Museum of Science, Boston, which has plans to place exhibits relating to nanotechnology in 100 museums by 2011. In collaboration with the NISE-Net, the SEPA-funded team will: 1) Research, write, and produce four - six multimedia stories about current nanomedicine research, including elements such as researcher profiles, interpretive animations, interactives exploring the basic science, potential for human benefit, and pathways for further inquiry, 2) Prototype an updateable and networkable software interface and a physical digital display kiosk that can serve audiences in science museums, student centers, libraries, and other public locations, 3) Evaluate the effectiveness of interface and story content and make plans for further development and distribution, and 4) Develop additional content production partnerships with research centers and media.
DATE: -
TEAM MEMBERS: Carol Lynn Alpert
resource project Professional Development, Conferences, and Networks
Working in collaboration with biomedical researchers from universities in the San Francisco area, across the nation, and abroad, the Exploratorium proposes to develop a high-quality microscopic imaging station for use by museum visitors, students, teachers and Internet visitors. This facility will utilize the highest quality optics and state-of-the-art microscopic techniques including biological staining and sophisticated digital recording. A variety of living specimens fundamental to basic biology, human development, the human genome and health-related research will be displayed. The station will be the lively center of the life sciences' area at the Exploratorium, providing educational content, dramatic imagery and regular demonstrations to reach an audience which ranges from the mildly curious to research scientists. In addition, the Exploratorium will be the first public institution, outside of a few research laboratories, to present live microscopic specimens via video and the Internet in real time. (To date, remote microscopes have generally presented inanimate objects or fixed tissue.) In order to increase student accessibility, subject matter for the imaging station will be integrated into the ongoing middle and high school teacher professional development at the museum. Teachers will be able to use the imaging station to conduct their own experiments, develop classroom explorations, take away images, access the website in their classrooms, or share materials with other teachers.
DATE: -
TEAM MEMBERS: Charles Carlson
resource project Exhibitions
Found in gravesites. Buried in the backyard. Lurking and scaring neighbors at Halloween. The stuff of legendary Hollywood horror films. But, in reality, bones are so much more. They are the living, growing framework of life. Bone Zone, a dynamic traveling exhibit to be developed by the Children's Museum of Indianapolis, will let visitors explore the mystery inside the body so long hidden by skin, fur or other outside covering. By capitalizing on the fact that visitors bring a portion of the exhibit into the gallery with them (their own bones), these visitors will learn that they too have bones and that their bones live and grow along with them. A great need for this type of exhibit exists because most people do not identify the skeleton as one of the body's major functioning systems. The cardiovascular and respiratory systems are most commonly cited. However, the skeletal system provides key functions. Visitors will learn the key functions this system fulfills as well as learn that bones are alive - most youth have the misconception that their bones are dead. The exhibit will showcase myriad human and animal bone scenarios in well-developed contexts that will help visitors understand the information presented. Interactive, hands-on activities will be highlighted in Bone Zone. Visitors will see the skeletons of other animals, and play a game where they learn the difference between bone and pseudo-bones, such as scales. In another area, visitors will observe bone cells in a microscope, see a large-scale depiction of a bone, and watch the bone cells at "work." The exciting and innovative 5,000-square-foot exhibit will be showcased at the museum beginning in 2001. The goals of the Bone Zone project are to (1) Develop an interactive, traveling exhibit about bones to promote an understanding of the skeletal system and bone-related diseases among children and the public; (2) Develop curriculum materials and workshops for teachers; and (3) Stimulate interest in health science careers.
DATE: -
TEAM MEMBERS: Karol Bartlett
resource project Exhibitions
The Maryland Science Center, in cooperation with the Johns Hopkins Medical Institutions (JHMI) and the University of Maryland, Baltimore, developed and produced BodyLink, a unique health sciences update center. The group did so with support from the National Institutes of Health SEPA (Science Education Partnership Award) Program, BodyLink, which is modeled after the Maryland Science Center's praised SpaceLink space science update center, will make today's medical and health news clear and relevant for visitors, young and old. Science and technology centers have long struggled with ways to acquaint visitors with the latest and greatest discoveries in health and biomedical science, and to interpret the significance of these findings for all ages. Museums can no longer be content with presenting only basic science, and need to expand their role as public communicators of science by presenting cutting-edge research, and by interpreting and explaining this information for visitors. BodyLink is a 1,500-square foot multimedia center where visitors can discover and appreciate the wonders of cutting-edge medical research (basic research, as well as clinical research) through interactive exhibits, stunning imagery, and facilitated demonstrations in a multimedia driven programmable space. BodyLink also includes WetLab, an open-access microbiology laboratory facility that allows visitors to conduct scientific investigations using state-of-the art research technology. Visitors can extract DNA from wheat germ, test common anti-microbial products on live bacteria, and learn Gram staining techniques, among other activities. Bodying will further serve school groups, general museum visitors, and remote-learning participants through the interactive website. BodyLink also incorporates an internship program for graduate students from the Maryland Science Center's collaborating universities. These internships give the graduate students an opportunity to interact with the general public to enhance their scientific communication skills and give them first-hand experience with investigating public understanding of scientific research.
DATE: -
TEAM MEMBERS: Roberta Cooks Tonya Matthews