"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE:
-
TEAM MEMBERS:
Tirupalavanam GaneshMonica ElserStephen KrauseDale BakerSharon Robinson-Kurplus
This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE:
-
TEAM MEMBERS:
James McginnisSpencer BensonScott Dantley
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE:
-
TEAM MEMBERS:
Vivian AltmannDarlene LibreroVirginia WittMichael Funk
The youth-based ITEST proposal, Invention, Design, Engineering and Art Cooperative (IDEA), will provide 100 students in grades 8-12 from the East Side of St. Paul, Minnesota with IT experiences in engineering and design. The content focus is mechanical and electrical engineering, such as product design, electronics, and robotics with an emphasis on 21st century job skills, including skills in advanced areas of microcontrollers, sensors, 3-D modeling software, and web software development for sharing iterative engineering product design ideas and maintaining progress on student product development. These technologies are practical and specific to careers in engineering and standards for technological literacy. During the three-year project period, a scaffolding process will be used to move students from exploratory activities in Design Teams in the 8th and 9th grades to paid employment experiences in grades 10-12 as part of Invention Crews. All design and product invention work will be directly connected to solving problems for local communities, including families and local businesses. For grades 8 and 9, students will receive 170 total contact hours per year and for grades 10-12, 280 contact hours per year. The participant target goal is 75% participation by girls, and African-American and Latino youth. Students participating in this project are situated within the country's most diverse urban districts with students speaking more than 103 languages and dialects. The schools targeted by this project average 84% of students receiving free or reduced price lunches, and have a population with 81% falling below proficiency in the Grade 8/11 Math MCA-II Test. To achieve the project goals of recruiting underrepresented students, and supporting academic transitions from middle and high school to college and university, the project team aggregated an impressive group of project partners that include schools, colleges, universities, and highly experienced youth and community groups, technology businesses that will provide mentoring of students and extensive involvement by parent and family services. Every partner committed to the project has a longstanding and abiding commitment to serving students from economically challenged areas.
DATE:
-
TEAM MEMBERS:
Anika WardKristen MurrayRachel GatesDavid Gundale
The Oregon Museum of Science and Industry (OMSI), in partnership with the Native American Youth Association (NAYA), Intel Oregon, the National Park Service, and National Oceanic and Atmospheric Administration, will the expand the existing Salmon Camp Research Team (SCRT), a youth-based ITEST project targeting Native American and Alaskan Native youth in middle and high school. SCRT uses natural resource management as a theme to integrate science and technology and provide students with opportunities to explore local ecosystems, access traditional American Indian/Native Alaskan knowledge, and work closely with researchers and natural resource professionals. The project is designed to spark and sustain the interest of youth in STEM and IT careers, provide opportunities to use IT to solve real world problems, and promote an understanding of the complementary nature of western and native science. The original SCRT project included summer residential programs, spring field experiences, weekend enrichment sessions, parental involvement, college preparatory support, and internship placement. The renewal will increase the IT content for participants by adding an afterschool component, provide opportunities for greater parental involvement, enhance the project website, and develop a SCRT toolkit. Students are exposed to a variety of technologies and software including Trimble GeoExplorer XM GPS units, PDAs with Bluetooth GPS antennae, YSI Multi-Probe Water Quality Field Meters, GPS Pathfinder, ArcMap, ArcPad, Terrasync, and FishXing. It is anticipated that this project will serve 500 students in Oregon, Washington, California, Idaho, Montana, and Alaska, proving them with over 132 contact hours.
DATE:
-
TEAM MEMBERS:
Travis Southworth-NeumeyerSteven TritzDaniel CalvertNicole Croft
This proposal, the "Dan River Information Technology Academy (DRITA)," is a request for a three-year program for high school students from underserved populations who are interested in pursuing IT or STEM careers. The overall goal of DRITA is to provide opportunities for promising African American or Hispanic youth to (1) develop solid Information Technology skills and (2) acquire the background and encouragement needed to enable them to pursue higher education in STEM fields, including IT itself and other fields in which advanced IT knowledge is needed. A total of 96 students will be recruited over the course of the three years. Each DRITA participant will receive 500 hours of project-based content. The project includes both school-year modules and a major summer component. Delivery components will include a basic IT skills orientation; content courses in areas such as animation, virtual environment modeling, advanced networking, programming, GIS, robotics, and gaming design; externships; a professional conference/trade show "simulation," and college/career counseling. Parent involvement is an integral part of the program and includes opportunities for parents to learn from participants, joint college visits, and information sessions and individual assistance in the college admission process.
DATE:
-
TEAM MEMBERS:
Julie BrownElizabeth NilsenMaurice Ferrell
In the Community Science Learning through Youth Astronomy Apprenticeships (YAA) project, underrepresented urban high school youths, working with recent college grads, conducted astronomy investigations, then translated their personal learning and enthusiasm into outreach programs for younger children, families and community members in an astronomy and space science program. Science education centers at Massachusetts Institute of Technology and Smithsonian Astrophysical Observatory, Boston community-based after school centers and the Institute for Learning Innovation collaborated.
DATE:
-
TEAM MEMBERS:
Irene PorroMary DussaultSusan O'ConnorJohn Belcher
BRIDGES: Build, Research, Invent, Design, Grow and Explore through Science The New York City Housing Authority (NYCHA) and the Salvadori Center partner in providing BRIDGES [Build, Research, Invent, Design, Grow and Explore through Science], an after-school program using investigations of the built environment to introduce and reinforce STEM concepts and skills. The program highlights engineering concepts and the design process through hands-on investigations of the built environment done in small groups (with an emphasis on collaborative learning). It is co-taught by Salvadori educators in partnership with NYCHA community center instructors. After an intensive 3-day institute to train NYCHA staff, Salvadori staff members meet weekly with the housing authority staff to provide coaching in facilitation skills and to co-teach projects on building scaled bridges, mapping neighborhoods, investigating tension and compression, and more. In subsequent years, NYCHA after-school instructors take over the teaching with on-going support/professional development from the Center. The target audience is young people 8-12 years old enrolled in after-school programs run by the New York City Housing Authority, who gain content understanding and self concept in terms of their attitude and interest in STEM learning. BRIDGES begins with 5 sites serving 150 children in its first year with five sites added annually. By Year 5, BRIDGES serves 625 children at 25 NYCHA community centers. In addition in Years 4 and 5, the project is disseminated in at least two municipalities outside of NYC. In all 775 youth and 60 after-school educators will be directly impacted by this new program. The strategic impact is to provide strategies and evidence of support necessary for effective scale up of this locally successful program and for bringing school-based materials associated with the project into the after-school time experience. A project book, summative evaluation by The After School Corporation (TASC), and a website will be shared with the field on line, through conference presentations, and publications. The Salvadori Center was founded by Dr. Mario Salvadori (1907-1997), Columbia Professor of Civil Engineering & Architecture, in collaboration with City College of New York Schools of Education and Architecture. Its mission is to stimulate and deepen young people's curiosity and knowledge about math, science, arts and the humanities by using the built environment as an entry point for learning. For over 20 years, the Center has offered research-based teacher development and support, including intensive training institutes, workshops and classroom mentoring programs focused on project-based learning. The Center has reached over 125,000 students in New York City public schools, and its books, videos, and construction kits have been distributed nationally and internationally. The Centers staff are all professionally trained architects, engineers, and science and fine arts teachers.
EDC and the Lawrence Hall of Science propose an intensive, innovative mentoring and professional development model that will build the capacity of community-based organizations (CBOs) to deliver high-quality science and engineering curricula to children in after-school programs. The program's goal is to alleviate two consistent problems of after-school STEM providers: high turnover rate and the ability to lead/teach high quality science activities. The project will put in place a broad network of trainers in three regions of the country, leveraging the expertise and collaboration of two well-established and trusted national informal education networks. The extensive collaboration involves 14 organizations total including nine science centers (of varying sizes), three state 4-H agencies, the National 4-H Council and EDC. The primary audience for this project is the trainers (science center, 4-H, others) who currently (or may in the future) train CBO staff. EDC, LHS, and three "mentor" science centers will supervise these trainings and develop the new PD resources designed to improve the quality of training that CBO staff receive from these and other trainers. The National 4-H Council will help coordinate training and dissemination of products through the 4-H national network Goodman Research Group will conduct formative and summative evaluations of the project. DELIVERABLES: This project will deliver: 1) a model of prolonged training and support to build the capacity of CBOs to lead high quality science and engineering curricula with children; 2) a mentoring model to support and supervise trainers who work directly with CBOs; and 3) professional development tools and resources designed to improve the quality of training delivered to CBO staff. STRATEGIC IMPACT: This project will impact the national after-school professional development field by (a) demonstrating a model for how science-center, 4-H, and other trainers can build the capacity of CBOs to improve the way they lead science and engineering projects with children, (b) nurturing a cadre of mentor institutions to assist others to adopt this capacity-building and professional-development model, and (c) developing professional development tools and resources that improve the quality of training delivered by trainers to CBO staff. COLLABORATIVE PARTNERS: The three "mentor" institutions are: (1) the Lawrence Hall of Science, (2) the Science Museum of Minnesota, and (3) the Boston Children's Museum. The six science centers include (1) COSI Toledo in Toledo, OH; (2) Headwaters Science Center in Bemidji, MN; (3) Providence Children's Museum in Providence, RI; (4) Rochester Museum and Science Center in Rochester, NY; (5) River Legacy Living Science Center in Arlington, TX; and (6) Explora in Albuquerque, NM. The three 4-H partners include (1) 4-H New Hampshire, (2) 4- H Minnesota, and (3) 4-H California.
This collaboration between the Franklin Institute and the Free Library of Philadelphia Foundation identifies the role of crucial intermediaries in the science learning of children and points to the opportunities offered through a museum and library partnership to provide engaging science resources in under-resourced communities where many adults lack science expertise and confidence. Through an emphasis on literacy and science, LEAP into Science builds the capacity of after school leaders, teens and parents to be competent science learners and facilitators and to connect science centers, parents and libraries in support of the science learning and achievement of children. Project features include a workshop model for families with K-4 children, enrichment sessions for after school students, family events at the museum, professional development for library and after school youth staff, and a national expansion conference. The conference introduces the project to potential national implementation sites. Case studies of sites from this conference inform a research study investigating the obstacles, modifications and necessary support to initiate and sustain the program model. The formative and summative evaluation measure the impact of this program on children, parents, librarians, and teen workers at the libraries. Fifty-three Philadelphia libraries in addition to libraries in three cities selected from the implementation conference have a direct program impact on 10,000 people nationally, including 300 after school facilitators and children's librarians.