"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE:
-
TEAM MEMBERS:
Tirupalavanam GaneshMonica ElserStephen KrauseDale BakerSharon Robinson-Kurplus
This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE:
-
TEAM MEMBERS:
James McginnisSpencer BensonScott Dantley
The youth-based ITEST proposal, Invention, Design, Engineering and Art Cooperative (IDEA), will provide 100 students in grades 8-12 from the East Side of St. Paul, Minnesota with IT experiences in engineering and design. The content focus is mechanical and electrical engineering, such as product design, electronics, and robotics with an emphasis on 21st century job skills, including skills in advanced areas of microcontrollers, sensors, 3-D modeling software, and web software development for sharing iterative engineering product design ideas and maintaining progress on student product development. These technologies are practical and specific to careers in engineering and standards for technological literacy. During the three-year project period, a scaffolding process will be used to move students from exploratory activities in Design Teams in the 8th and 9th grades to paid employment experiences in grades 10-12 as part of Invention Crews. All design and product invention work will be directly connected to solving problems for local communities, including families and local businesses. For grades 8 and 9, students will receive 170 total contact hours per year and for grades 10-12, 280 contact hours per year. The participant target goal is 75% participation by girls, and African-American and Latino youth. Students participating in this project are situated within the country's most diverse urban districts with students speaking more than 103 languages and dialects. The schools targeted by this project average 84% of students receiving free or reduced price lunches, and have a population with 81% falling below proficiency in the Grade 8/11 Math MCA-II Test. To achieve the project goals of recruiting underrepresented students, and supporting academic transitions from middle and high school to college and university, the project team aggregated an impressive group of project partners that include schools, colleges, universities, and highly experienced youth and community groups, technology businesses that will provide mentoring of students and extensive involvement by parent and family services. Every partner committed to the project has a longstanding and abiding commitment to serving students from economically challenged areas.
DATE:
-
TEAM MEMBERS:
Anika WardKristen MurrayRachel GatesDavid Gundale
The Oregon Museum of Science and Industry (OMSI), in partnership with the Native American Youth Association (NAYA), Intel Oregon, the National Park Service, and National Oceanic and Atmospheric Administration, will the expand the existing Salmon Camp Research Team (SCRT), a youth-based ITEST project targeting Native American and Alaskan Native youth in middle and high school. SCRT uses natural resource management as a theme to integrate science and technology and provide students with opportunities to explore local ecosystems, access traditional American Indian/Native Alaskan knowledge, and work closely with researchers and natural resource professionals. The project is designed to spark and sustain the interest of youth in STEM and IT careers, provide opportunities to use IT to solve real world problems, and promote an understanding of the complementary nature of western and native science. The original SCRT project included summer residential programs, spring field experiences, weekend enrichment sessions, parental involvement, college preparatory support, and internship placement. The renewal will increase the IT content for participants by adding an afterschool component, provide opportunities for greater parental involvement, enhance the project website, and develop a SCRT toolkit. Students are exposed to a variety of technologies and software including Trimble GeoExplorer XM GPS units, PDAs with Bluetooth GPS antennae, YSI Multi-Probe Water Quality Field Meters, GPS Pathfinder, ArcMap, ArcPad, Terrasync, and FishXing. It is anticipated that this project will serve 500 students in Oregon, Washington, California, Idaho, Montana, and Alaska, proving them with over 132 contact hours.
DATE:
-
TEAM MEMBERS:
Travis Southworth-NeumeyerSteven TritzDaniel CalvertNicole Croft
This proposal, the "Dan River Information Technology Academy (DRITA)," is a request for a three-year program for high school students from underserved populations who are interested in pursuing IT or STEM careers. The overall goal of DRITA is to provide opportunities for promising African American or Hispanic youth to (1) develop solid Information Technology skills and (2) acquire the background and encouragement needed to enable them to pursue higher education in STEM fields, including IT itself and other fields in which advanced IT knowledge is needed. A total of 96 students will be recruited over the course of the three years. Each DRITA participant will receive 500 hours of project-based content. The project includes both school-year modules and a major summer component. Delivery components will include a basic IT skills orientation; content courses in areas such as animation, virtual environment modeling, advanced networking, programming, GIS, robotics, and gaming design; externships; a professional conference/trade show "simulation," and college/career counseling. Parent involvement is an integral part of the program and includes opportunities for parents to learn from participants, joint college visits, and information sessions and individual assistance in the college admission process.
DATE:
-
TEAM MEMBERS:
Julie BrownElizabeth NilsenMaurice Ferrell
In the Community Science Learning through Youth Astronomy Apprenticeships (YAA) project, underrepresented urban high school youths, working with recent college grads, conducted astronomy investigations, then translated their personal learning and enthusiasm into outreach programs for younger children, families and community members in an astronomy and space science program. Science education centers at Massachusetts Institute of Technology and Smithsonian Astrophysical Observatory, Boston community-based after school centers and the Institute for Learning Innovation collaborated.
DATE:
-
TEAM MEMBERS:
Irene PorroMary DussaultSusan O'ConnorJohn Belcher
BRIDGES: Build, Research, Invent, Design, Grow and Explore through Science The New York City Housing Authority (NYCHA) and the Salvadori Center partner in providing BRIDGES [Build, Research, Invent, Design, Grow and Explore through Science], an after-school program using investigations of the built environment to introduce and reinforce STEM concepts and skills. The program highlights engineering concepts and the design process through hands-on investigations of the built environment done in small groups (with an emphasis on collaborative learning). It is co-taught by Salvadori educators in partnership with NYCHA community center instructors. After an intensive 3-day institute to train NYCHA staff, Salvadori staff members meet weekly with the housing authority staff to provide coaching in facilitation skills and to co-teach projects on building scaled bridges, mapping neighborhoods, investigating tension and compression, and more. In subsequent years, NYCHA after-school instructors take over the teaching with on-going support/professional development from the Center. The target audience is young people 8-12 years old enrolled in after-school programs run by the New York City Housing Authority, who gain content understanding and self concept in terms of their attitude and interest in STEM learning. BRIDGES begins with 5 sites serving 150 children in its first year with five sites added annually. By Year 5, BRIDGES serves 625 children at 25 NYCHA community centers. In addition in Years 4 and 5, the project is disseminated in at least two municipalities outside of NYC. In all 775 youth and 60 after-school educators will be directly impacted by this new program. The strategic impact is to provide strategies and evidence of support necessary for effective scale up of this locally successful program and for bringing school-based materials associated with the project into the after-school time experience. A project book, summative evaluation by The After School Corporation (TASC), and a website will be shared with the field on line, through conference presentations, and publications. The Salvadori Center was founded by Dr. Mario Salvadori (1907-1997), Columbia Professor of Civil Engineering & Architecture, in collaboration with City College of New York Schools of Education and Architecture. Its mission is to stimulate and deepen young people's curiosity and knowledge about math, science, arts and the humanities by using the built environment as an entry point for learning. For over 20 years, the Center has offered research-based teacher development and support, including intensive training institutes, workshops and classroom mentoring programs focused on project-based learning. The Center has reached over 125,000 students in New York City public schools, and its books, videos, and construction kits have been distributed nationally and internationally. The Centers staff are all professionally trained architects, engineers, and science and fine arts teachers.
EDC and the Lawrence Hall of Science propose an intensive, innovative mentoring and professional development model that will build the capacity of community-based organizations (CBOs) to deliver high-quality science and engineering curricula to children in after-school programs. The program's goal is to alleviate two consistent problems of after-school STEM providers: high turnover rate and the ability to lead/teach high quality science activities. The project will put in place a broad network of trainers in three regions of the country, leveraging the expertise and collaboration of two well-established and trusted national informal education networks. The extensive collaboration involves 14 organizations total including nine science centers (of varying sizes), three state 4-H agencies, the National 4-H Council and EDC. The primary audience for this project is the trainers (science center, 4-H, others) who currently (or may in the future) train CBO staff. EDC, LHS, and three "mentor" science centers will supervise these trainings and develop the new PD resources designed to improve the quality of training that CBO staff receive from these and other trainers. The National 4-H Council will help coordinate training and dissemination of products through the 4-H national network Goodman Research Group will conduct formative and summative evaluations of the project. DELIVERABLES: This project will deliver: 1) a model of prolonged training and support to build the capacity of CBOs to lead high quality science and engineering curricula with children; 2) a mentoring model to support and supervise trainers who work directly with CBOs; and 3) professional development tools and resources designed to improve the quality of training delivered to CBO staff. STRATEGIC IMPACT: This project will impact the national after-school professional development field by (a) demonstrating a model for how science-center, 4-H, and other trainers can build the capacity of CBOs to improve the way they lead science and engineering projects with children, (b) nurturing a cadre of mentor institutions to assist others to adopt this capacity-building and professional-development model, and (c) developing professional development tools and resources that improve the quality of training delivered by trainers to CBO staff. COLLABORATIVE PARTNERS: The three "mentor" institutions are: (1) the Lawrence Hall of Science, (2) the Science Museum of Minnesota, and (3) the Boston Children's Museum. The six science centers include (1) COSI Toledo in Toledo, OH; (2) Headwaters Science Center in Bemidji, MN; (3) Providence Children's Museum in Providence, RI; (4) Rochester Museum and Science Center in Rochester, NY; (5) River Legacy Living Science Center in Arlington, TX; and (6) Explora in Albuquerque, NM. The three 4-H partners include (1) 4-H New Hampshire, (2) 4- H Minnesota, and (3) 4-H California.
This collaboration between the Franklin Institute and the Free Library of Philadelphia Foundation identifies the role of crucial intermediaries in the science learning of children and points to the opportunities offered through a museum and library partnership to provide engaging science resources in under-resourced communities where many adults lack science expertise and confidence. Through an emphasis on literacy and science, LEAP into Science builds the capacity of after school leaders, teens and parents to be competent science learners and facilitators and to connect science centers, parents and libraries in support of the science learning and achievement of children. Project features include a workshop model for families with K-4 children, enrichment sessions for after school students, family events at the museum, professional development for library and after school youth staff, and a national expansion conference. The conference introduces the project to potential national implementation sites. Case studies of sites from this conference inform a research study investigating the obstacles, modifications and necessary support to initiate and sustain the program model. The formative and summative evaluation measure the impact of this program on children, parents, librarians, and teen workers at the libraries. Fifty-three Philadelphia libraries in addition to libraries in three cities selected from the implementation conference have a direct program impact on 10,000 people nationally, including 300 after school facilitators and children's librarians.
In this project, the Education Development Center and Campbell-Kibbler Research Associates Inc., are researching the impact of a set of after-school biology materials on under-represented middle school youth at the Boston Nature Center and two University of New Hampshire 4H Clubs. In response to a general need in the field to examine the relationship between learning in informal science programs and learning in school, this project studies the potential of informal contexts to enhance student engagement in the phases of inquiry, giving special attention to the role of visual representations in the early stages of inquiry. The research identifies how visual representations are directly involved in the ability of young people to discern patterns and externalize their own thinking and how these two abilities impact their science confidence and basic knowledge of the biology content in the units. To identify the potential impact of this strategy on in school learning, the in school learning of participating youth is compared to a similar group of children who do not participate in the program. Secondarily the project identifies how the results of this research influence the work of after-school program developers' use of visual tools. The program goal is to provide a rich foundation of out of school experiences for young people upon which they can more readily grasp concepts that are also introduced in the school context. Deliverables include a peer reviewed research paper, two extended biology units using digital and hand made visual representations, and a manual for developing similar programs. The summative evaluation measures the impact of the deliverables on the professional field. The curriculum will be used at hundreds of after school programs and the manual and research paper will impact program developers field-wide by influencing future programs they develop.
DATE:
-
TEAM MEMBERS:
Bernard ZubrowskiBryan WunarPatricia CampbellKerry Ouellet
This project will develop a new 4-H Afterschool curriculum called Discovering Technology to be implemented in 7 states potentially reaching 5000 middle school youths and 250 4-H leaders annually. The program would encourage youth in both rural and urban settings to pursue careers in engineering and technology. The project is a partnership of the Pratt School of Engineering at Duke University, the National 4-H Council/4-H Afterschool, North Carolina 4-H and the National Science & Technology Education Partnership (NSTEP).