Informal environments—or out-of-school-time (OST) settings—play an important role in promoting science learning for preK–12 students and beyond. The learning experiences delivered by parents, friends, and educators in informal environments can spark student interest in science and provide opportunities to broaden and deepen students’ engagement; reinforce scientific concepts and practices introduced during the school day; and promote an appreciation for and interest in the pursuit of science in school and in daily life. NSTA recommends strengthening informal learning opportunities for all preK
DATE:
TEAM MEMBERS:
National Science Teachers Association
There is a growing commitment within science centres and museums to deploy computer-based exhibits to enhance participation and engage visitors with socio-scientific issues. As yet however, we have little understanding of the interaction and communication that arises with and around these forms of exhibits, and the extent to which they do indeed facilitate engagement. In this paper, we examine the use of novel computer-based exhibits to explore how people, both alone and with others, interact with and around installations. The data are drawn from video-based field studies of the conduct and
The current world research agenda is comprehensive. The results of many studies and experiments in which scientists are currently engaged will undoubtedly have profound impacts on the lives of citizens in developed and developing nations. Yet few people even know what research is being conducted, much less understand why it is being done and what the potential implications may be. This is a critical shortcoming of our public information system. Given the frenetic pace of science research in multi-disciplinary fields, it is increasingly vital that the public be made aware of new findings in a
At the Maryland Science Center, a new permanent exhibition with a companion mobile game is focused on electricity. Multimedia Research, an independent evaluation firm, implemented a summative evaluation to assess how using the PowerUp! game in the exhibition influences engagement and knowledge acquisition. The evaluation collected timing and tracking observations and pre- and post-interview data from 18 ten-year-olds who used the game within the Power Up! exhibition area and 16 ten-year-olds who did not use the game. Game players experienced the Power Up! exhibition area differently from non
DATE:
TEAM MEMBERS:
Maryland Science CenterBarbara FlaggIlona Holland
The drawing of 'outlines' can be shown to be dependent upon the bounding edge aspect of visual cognition, which is a principal means of discerning 'identity' from other features of experience in the visual field. Visual 'signatures' can be noticed when using techniques for the scientific visualization of data. Using examples from an ongoing art-science project between the Faculty of Arts and Architecture (Brighton) and the Meteorology Dept at the University of Reading, the paper will explore the boundary between the 'rational' and the subjective, and between the representation of knowledge and
There is a movement afoot to turn the acronym STEM—which stands for science, technology, engineering, and mathematics—into STEAM by adding the arts. Science educators have finally begun to realize that the skills required by innovative STEM professionals include arts and crafts thinking. Visual thinking; recognizing and forming patterns; modeling; getting a "feel" for systems; and the manipulative skills learned by using tools, pens, and brushes are all demonstrably valuable for developing STEM abilities. And the National Science Foundation and the National Endowment for the Arts have gotten
Building on and extending existing research, this article proposes a 4-phase model of interest development. The model describes 4 phases in the development and deepening of learner interest: triggered situational interest, maintained situational interest, emerging (less-developed) individual interest, and well-developed individual interest. Affective as well as cognitive factors are considered. Educational implications of the proposed model are identified.
This chapter draws attention to the self-regulatory skills that students use in informal learning settings. Formal and informal learning settings are defined as complementary learning environments and it is pointed out that students differ with respect to the learning environments they find conducive to learning. It is suggested that the goals students set for themselves when learning in an informal learning context are different from the goals they set for themselves in a formal learning context. Furthermore, it is speculated that students attend to different clues and select different self
Sage is a robot that has been installed at the Carnegie Museum of Natural History as a full-time autonomous member of the staff. Its goal is to provide educational content to museum visitors in order to augment their museum experience. This paper discusses all aspects of the related research and development. The functional obstacle avoidance system, which departs from the conventional occupancy grid-based approaches, is described. Sage's topological navigation system, using only color vision and odometric information, is also described. Long-term statistics provide a quantitative measure of
DATE:
TEAM MEMBERS:
Illah NourbakhshJudith BobenageSebastien GrangeRon LutzRoland MeyerAlvaro Soto
Several instruments have been developed to assess student images of scientists, but most require children to respond in writing. Since not all children can respond appropriately to written instruments. Chambers (1983) developed the Draw-A-Scientist Test (DAST) in which children's drawings are rated according to particular characteristics present or absent in the drawings, allowing researchers to determine the images of scientists children hold. In order to improve the objectivity and interrater reliability of this means of assessment, the authors built upon Chambers' study to develop a
DATE:
TEAM MEMBERS:
Kevin FinsonJohn BeaverBonnie Cramond
This article describes the software architecture of an autonomous, interactive tour-guide robot. It presents a modular and distributed software architecture, which integrates localization, mapping, collision avoidance, planning, and various modules concerned with user interaction and Web-based telepresence. At its heart, the software approach relies on probabilistic computation, on-line learning, and any-time algorithms. It enables robots to operate safely, reliably, and at high speeds in highly dynamic environments, and does not require any modifications of the environment to aid the robot's
The Situating Hybrid Assemblies in Public Environments (SHAPE) project within the European Disappearing Computer initiative has explored how emerging ubiquitous technologies can support museum visiting experiences. SHAPE has designed hybrid artifacts that support visitors manipulating phisical and digital material in a visible and interesting manner.
DATE:
TEAM MEMBERS:
Liam BannonSteve BenfordJohn BowersChristian Heath