Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE:
-
TEAM MEMBERS:
Neil HutzlerEric IversenChristine CunninghamJoan ChaddeDavid Heil
resourceprojectProfessional Development, Conferences, and Networks
The "Successful scaffolding strategies in urban museums: Research and practice on mediated scientific conversations with families and museum educators" project seeks to simultaneously advance existing research on learning in informal settings, and to improve museum educator practice in mediating understanding with families in an urban museum. This collaboration between the Museum of Science & Industry (MOSI) in Tampa, Florida, and the University of California Santa Cruz (UCSC) will focus on three research questions: 1. What are several underlying characteristics of successful and unsuccessful strategies for scaffolding understanding of collaborative groups while interacting and talking at life science based exhibits?; 2. How can such identified strategies for scaffolding understanding of collaborative groups be best translated to inform teaching practices in museums, using teacher research as the focus?; 3. Can these scaffolding strategies be disseminated beyond MOSI in a published and replicable model for other informal learning centers? This project is designed to identify, practice and disseminate successful scaffolding strategies, studying, first, how they are used by families visiting MOSI without mediators, and, second, with museum educators. They then will collaborate with museum educator researchers (MERs) to analyze digital audio/video and other data, carefully abstracting new scaffolding tools. This is followed by practice and reflection and broader dissemination with the goal of understanding essential aspects of successful and unsuccessful scaffolding. A "teacher research model" will be used for museum educator professional development. By intertwining demonstrated and effective scaffolding research and practice with populations typically left out of informal education research, the anticipated strategic impact will be in: * Advancing current understanding of a new area of informal learning research centering on scaffolding practices; * Redefining scaffolded teaching practice with museum educator researchers; * Creating a model for conducting collaborative research with families, youth and schools typically not included in museum research and evaluation; * Contributing to overall research on collaborative sense-making conversations in museums; and * Increasing the ability of museum educators who interact with the public, their supervisors and trainers to promote self-directed learning. Once the researched strategies and methodologies for identifying those strategies are documented, future researchers can efficiently add to the body of understandings. This project will have broad implications for all informal learning, no matter the location.
To address a lack of informal science education opportunities and to increase community capacity to support STEM education for their children, Washington State University's Yakima Valley/Tri Cities MESA program, the Pacific Science Center, and KDNA Educational Radio have developed a set of informal science initiatives that offer complementary learning opportunities for rural Latino families. The goal of this four-year program is to create a sustainable informal science infrastructure in southeastern Washington State to serve families, increase parental awareness, support and involvement in science education and ultimately increase the numbers of rural Latino youth pursuing STEM-related under graduate studies. This program is presented in English and Spanish languages in all of its interconnected deliverables: Two mobile exhibits, beginning with one focused on agricultural and environmental science developed by The Pacific Science (PCS) Center; Curriculum and training in agriculture, life sciences and facilitating learning; Curriculum and training for community members to provide support to parents in encouraging the academic aspirations of their children developed by PSC and MESA; 420 Youth and parents from the MESA program trained to interpret exhibits and run workshops, community festivals, family science workshops and Saturday programs throughout the community; Four annual community festivals, quarterly Family Saturday events, and Family Science Workshops reaching 20,000 people over the four-year project; Take home activities, science assemblies, a website and CDs with music and science programming for community events; A large media initiative including monthly one hour call-in radio programs featuring science experts, teachers, professionals, students and parents, 60-second messages promoting science concepts and resources and a publicity campaign in print, radio and TV to promote community festivals. These venues reach 12,500-25,000 people each; A program manual that includes training, curriculum and collaborative strategies used by the project team. Overall Accesso la Ciencia connects parents and children through fun community activities to Pasco School District's current LASER science education reform effort. This project complements the school districts effort by providing a strong community support initiative in informal science education. Each activity done in the community combines topics of interest to rural Latinos (agriculture for instance) to concepts being taught in the schools, while also providing tools and support to parents that increases their awareness of opportunities for their children in STEM education.
DATE:
-
TEAM MEMBERS:
James PrattD. Janae' LandisDonald LynchMichael Trevisan
The Chabot Space and Science Center in Oakland, CA is forming and leading a national collaboration producing Maya Skies, a full-dome digital planetarium theater project with several deliverables: a 25-minute Maya Skies show, a model for collaborative production in the full-dome field, research on full-dome immersion experiences and learning, the establishment of a national consortium of seven full-dome theaters and professional development workshops for the field. The research, conducted by the Institute for Learning Innovation, will test the degree to which personal relevance influences free-choice learning experiences. New technologies for digital, high resolution image data-capturing of archaeological sites will be employed. The project's goal is to advance the digital planetarium field with innovations in show production and research and with increased impact on public audiences and the practice of planetarium professionals.
DATE:
-
TEAM MEMBERS:
Alexander ZwisslerAlexandra BarnettMartin StorksdieckDavid Beining
SCITECH will develop and deliver ten sets of twelve portable interactive exhibits and educational programs on space exploration to 220 venues in five states. The project is based on a collaborative of ten small science museums: Imaginarium (Anchorage, AK); Bluedorn Imaginarium (Waterloo, IA); Science Station (Cedar Rapids, IA); Discovery Center (Rockford, IL); Lakeview Museum (Peoria, IL); SCITECH (Aurora, IL); Evansville Museum of Arts and Science (Evansville, IN); Science Central (Fort Wayne, IN); Children's Science Museum (Terre Haute, IN); Science Works (Ashland, OR). The Exploratorium will build the exhibits and conduct a residency program of professional development for staff from the participating museums. The exhibits and programs are intended to reach some 330,000 people in rural and lower-economic areas at 220 nontraditional destinations (fairs, festivals, libraries, scouts and youth clubs). These activities are designed to increase interest in and knowledge of astronomy and space exploration. In addition, this project will provide capacity building and professional development for the small museums, as well as a model that can be used by others not participating directly in this project.
DATE:
-
TEAM MEMBERS:
David JamesRonen MirShawn CarlsonKua PattenSheldon SchaferSarah WolfMitch LumanAnn Fumarolo
This project will develop a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the discoveries from this scientific discipline. The Space Science Institute will capitalize on its prior successes and the success of other education programs to develop a comprehensive and integrated program that has the following five components: (1) the Space Weather Center website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. Partners include UC Berkeley's Space Sciences Laboratory; the American Library Association; Macerich: a mall developer with nationwide impact; and the Math, Engineering, Science Achievement program. The project brings together a creative collaboration between exhibit designers, graphic artists, formal/informal educators, and research scientists. The project spans a full spectrum of science communication strategies (formal, informal, and public outreach). The evaluation part of the project will examine how well the project elements work together and a pilot research study will explore the efficacy of online digital games for communicating complex space weather content. Results will be published and the findings presented at professional meetings and online. The three-year project is expected to impact well over two million people, including exhibit and website visitors and outreach visitors at various venues such as libraries and malls.
Communicating Ocean Sciences to Informal Audiences (COSIA) is an innovative project that creates unique partnerships between informal science education institutions and local colleges conducting research in ocean sciences, with an emphasis on earth, biological and geochemical sciences. The project enables over 100 undergraduate and graduate students that are enrolled in the Communicating Ocean Sciences college course to create engaging learning activities and teaching kits in conjunction with their informal education partners. Institutional teams include: Long Beach Aquarium and California State University-Long Beach; Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; Virginia Aquarium and Science Center and Hampton University; Liberty Science Center and Rutgers University; and Lawrence Hall of Science and University of California-Berkeley. Students learn valuable outreach skills by providing visiting families and children with classes, guided tours and interactive learning experiences. Deliverables include a three-day partner workshop, a series of COSIA Handbooks (Collaboration Guide, Informal Education Guide and Outreach Guide), an Informal Science Education Activities Manual and Web Bank of hands-on activities. Strategic impact will be realized through the creation of partnerships between universities and informal science education institutions and capacity building that will occur as informal science institutions create networks to support the project. It is also anticipated the evaluation outcomes will inform the field abut the benefits of museum and university partnerships. The project will impact more than 30,000 elementary and middle school children and their families, as well as faculty, staff and students at the partnering institutions.
This five-year project is designed to provide urban youth in grades 4-8 with innovative, hands-on science experiences in an after-school environment that will enhance their science competencies, while increasing the capacity of after-school leaders. In Years 1-3, nine science modules will be developed, field-tested and evaluated in collaboration with 12 after-school programs in Boston, Massachusetts, serving diverse populations of low-income youth. Each module includes a full color activity book, comprehensive facilitation guide and guidelines that enable students to share results of their investigations on the project website. Topics to be addressed include electricity, planets, invention and habitats. A comprehensive training program will include training for coaches who will provide assistance with the implementation of science modules and offer ongoing professional development for after-school providers. In Years 4-5, the project will be disseminated to after-school programs in Los Angeles, CA, Columbus, OH, and Philadelphia, PA. Additionally, the PI will partner with the National Institute on Out of School Time (NIOST) to disseminate the project nationally using the Cross-Cities Network. All materials will be printed in both English and Spanish, while the website will offer the option of downloading materials in a variety of other languages. It is anticipated this project will serve more than 3,000 youth and 400 after-school providers.
The Space Science Institute is establishing a museum educator/theater network of eight museums around the country, pairing larger with smaller institutions. The Association of Science-Technology Centers and the Astronomical Society of the Pacific also are collaborators. The primary audience is informal science education museum educators; secondary audiences are museum visitors experiencing the to-be-developed programs. The Science Theater Education Programming System (STEPS) is a technology that has been developed by the PI and others. The team will be continuing to expand the capability of the system for this project, and the partnering museums are collaboratively creating an initial set of theater programs on astrobiology, along with a suite of training programs and communication formats for educators. The STEPS technology allows these programs to be delivered both on site and via outreach, depending on the goals of each organization. The intent is to form the core of a community of practice that would enhance the professional capacity and identities of informal educators. The theater program format is positioned as a flexible, low-cost alternative to traveling exhibits, particularly for the smaller institutions. Deliverables include: the establishment of the network, the STEPS system and programs, professional development tutorials and workshops, evaluation of the programs, and a research project and report examining the network as a community of practice and vehicle for strengthening the professional identities of museum educators.
Goals: 1) Increase the number of Alaskans from educationally and/or economically disadvantaged backgrounds, particularly Alaska Natives, who pursue careers in health sciences and health professions and 2) Inform the Alaskan public about health science research and the clinical trial process so that they are better equipped to make healthier lifestyle choices and better understand the aims and benefits of clinical research. Objectives: 1) Pre-med Summer Enrichment program (U-DOC) at UAA (pipeline into college), 2) Statewide Alaska Student Scientist Corps for U-DOC, 3) students (pipeline into college), 4) Facility-based Student Science Guide program at Imaginarium Science Discovery Center, 5) Job Shadowing/Mentorship Program for U-DOC students and biomedical researchers, 6) Research-based and student-led exhibit, demonstration, and multi-media presentations, 7) Professional Development for educators, 8) North Star Website.
In January 2006, the Dolan DNA Learning Center launched its SEPA Phase I project: Inside Cancer, a media-rich internet site that examines the molecular genetic basis of cancer. We now propose a Phase II Project, which will employ a six-part strategy to broadly disseminate the site and evaluate its use as a resource in high school biology and health education. a) A partnership will disseminate the site to 800 secondary science teachers at one-day workshop held at 20 sites nationwide. This cost-effective program will focus on key concepts and relevant teaching standards, and also provide a dedicated base for conducting second-round training and evaluation activities. b) An online Teacher Center will allow teachers to develop custom multimedia lessons based on Inside Cancer materials. Key features will be a Concept Matrix, Lesson Exchange, and Atomizer, which will match content with teaching standards, facilitate a community approach to lesson plan development, and provide a searchable interface of over 3,000 multimedia content "atoms." c) Fellowships will allow three lead faculty to work directly with DNALC staff to develop the Teacher Center and model lesson plans (DNALC Fellows). Eighty workshop alumni will serve as Regional Fellows and receive stipends to conduct second-round training activities reaching 640 additional teachers. d) An annual review will assess fidelity to project objectives and analyze site logs to detect patterns of use. An online survey of 1,500 Inside Cancer users annually will assess differences in site use among teachers, students, science and medical professionals, and the general public. e) A longitudinal evaluation of 1,440 participants in workshops and second-round activities will gauge how teachers use Inside Cancer and the Teacher Center, and how their teaching behavior changes over time. f) A controlled study will compare attitudinal and learning effects among 280 high school students - half of whom use Inside Cancer in their classes an half who don't. Biology and health classes will be selected from a single school district that reflects the ethnic and racial distribution of the U.S. population.
Children's Hospital Oakland Research Institute (CHORI), in collaboration with the Hall of Health, a hands-on health museum, proposes a two year, Phase II SEPA project entitled Health and Biomedical Science for a Diverse Community. The purpose of this project is to disseminate (1) "Your Genes and Your Choices," a unique, interactive exhibit on social and genetic factors in health, and (2) a 4th and 5th grade health and biomedical science curriculum. The exhibit and curriculum were developed during Phase I. "Your Genes and Your Choices, "which has eight interactive stations and has been piloted at the Hall of Health, is designed for small science museums and health education centers. It will travel to four venues nationwide during Phase II and remain available to other venues after the grant ends. The innovative, activity based curriculum consists of eight instructional units that introduce students to scientific concepts and investigation in the context of the study of diseases and health conditions that disproportionately affect minority populations. The topics are: Fourth Grade: Unit 1: Nutrition: Balance and Imbalance (Obesity); Unit 2. Traumatic Brain Injuries; Unit 3. Infectious Diseases and Immunity; Unit 4. Environmental Toxics: Poisoning Prevention. Fifth Grade: Unit 1. Nutrition: Diabetes; Unit 2. Asthma and Lung Disease; Unit 3. Heart Disease; and Unit 4. Sickle Cell Anemia and Genetics. Each unit consists of five one hour lessons. The curriculum was piloted during Phase I, both in the classroom and in an after school science club, at two elementary schools serving predominantly minority children in Oakland, California. Now we propose to: (1) disseminate the curriculum via science clubs to ten elementary schools in Oakland and Berkeley; (2) offer a series of educator workshops to enhance the skills of teachers and after school personnel to teach scientific investigation and to incorporate the latest findings in biomedical science across the curriculum; and 3) hold family science festivals at each participating school to introduce parents to the topics of the science clubs. The festivals will include hands-on activities, talks by CHORI researchers, and focused discussions with healthcare providers on issues relating to minority health. This project involves clinical as well as basic science investigators, healthcare providers, teachers and health educators, high school and college students, and faculty from San Francisco State University and the University of California at Berkeley. The ultimate goals are to make science interesting and relevant to children who come from ethnically diverse, low income environments; to help them meet state and national objectives for learning in health, science, and scientific inquiry; to help them and their parents understand the relationship between science and health; and to foster their interest in science, so that they may consider future careers related to biomedical science. All project activities will be assessed through formative and summative evaluation. The science clubs will remain in place at the ten participating schools after Phase II funding ends, and the curriculum and evaluation tools will be posted on the internet, and thereby available to others.