The UMN MRSEC conducts an ambitious and multi-faceted education and outreach program to extend the impact of the Center beyond the university, providing undergraduates, college faculty, high school teachers, and K-12 students with opportunities that augment their traditional curriculum and increase their appreciation of materials science and engineering (MS&E). Our summer research program provides high-quality research and educational experiences in MS&E to students and faculty, drawn primarily from undergraduate institutions with limited research opportunities, while placing a strong emphasis on inclusion of women and members of underrepresented groups.
If we truly wish to promote science or STEM education, then it would seem that the joining of resources and expertise from the communities of formal schooling and informal science education institutions or ISEIs (museums, aquariums, and the like) would be an important early step. Yet creating such connections between teacher and museum remain a challenge for both teachers and informal educators. This study employs a communities of practice lens (Wenger, 1998) to provide a deeper explanation for the challenges inherent in those programs and experiences (field trips, outreach programs, teacher
The University of Arkansas Center for Math and Science Education (CMASE), one of eleven mathematics and science centers on university and college campuses around the state, provides quality resources and materials to the home, private and public education community. The Arkansas NASA Educator Resource Center, located within CMASE, is the state's dissemination point for education materials provided by NASA. Resources and school/classroom presentations are free of charge. The main objectives of both centers are to provide: (1) K-16 education outreach to the home, private and public Northwest Arkansas education community; (2) quality professional development for pre-service and in-service teachers at local, regional, state and national levels; (3) access points for dissemination of educational materials, resources and information; and (4) links to common education allies throughout the state and nation.
The C-DEBI education program works with audiences at all levels (K-12, general public, undergraduate, graduate and beyond) in formal and informal settings (courses, public lectures, etc.). Sub-programs focus on community college research internships and professional development for graduate students and postdocs.
This project will study two emerging and innovative technologies: interactive, dynamic simulations and touch-based tablet devices. The use of touch-based tablet technology (e.g., iPads) in the classroom is rapidly increasing, though little research has been done to understand effective implementation for learning science. Interactive simulations are now in use across K-16 levels of education, though what impact tablet devices have on the effective implementation of science simulations is not yet known. This project will explore this new frontier in education, over a range of contexts, providing new insight into effective interactive simulation design, classroom facilitation techniques, and the effects of tablet-based simulation use on underrepresented populations in STEM courses. Together, Dr. Emily Moore (PhET, UCB), a leader in interactive simulation design and classroom use, and Dr. Roy Tasker of the University of Western Sydney (UWS), a leader in chemistry education research, science visualizations, and teaching with technology, will research on the new technology frontier in science education - laying the groundwork for future investigations of foundational questions in technology use for learning science. This work has great potential to transform the future of science learning, making it both more engaging and more effective for diverse populations. The research findings will immediately impact 1) the design of new and existing PhET simulations - reaching millions of students and teachers using PhET simulations worldwide - and 2) the development of best practices guidelines for teachers using tablet technology to increase student learning, engagement, and participation in STEM disciplines.
The “Being Me” program was developed to bring the educational process to life through hands-on learning that promotes children’s awareness of health issues and encourages scientific inquiry in an art-focused curriculum supporting National Science Content Standards (now Next Generation Science Standards, or NGSS). In 2009, the “Being Me” partnership – Children’s National Medical Center (CNMC), the National Children’s Museum (NCM), and George Washington University’s Graduate School of Education and Human Development (GW) – received a five-year National Institutes of Health Sciences Education
DATE:
TEAM MEMBERS:
Children’s Research InstituteJohn Fraser
The ScratchEd project, led by faculty at the Massachusetts Institute of Technology and professionals at the Education Development Center, is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind. The effectiveness of the ScratchEd project is being evaluated by research addressing four specific questions: (1) What are the levels of teacher participation in the various ScratchEd PD offerings and what do teachers think of these experiences? (2) Do teachers who participate in ScratchEd PD activities change their use of Scratch in classroom instruction to create design-based learning opportunities? (3) Do the students of teachers who participate in the ScratchEd PD activities show evidence of developing an understanding of computational thinking concepts and processes? (4) When the research instruments developed for the evaluation are made available for teachers in the Scratch community to use for self-evaluation, how do teachers make use of them? Because both computational thinking and design-based instruction are complex activities, the project research is using a combination of survey, interview, and artifact analysis methods to answer the questions. The ScratchEd professional development and research work will provide important insight into the challenge of helping teachers create productive learning environments for development of computational thinking. Those efforts will also yield a set of evaluation tools that can be integrated into the ScratchEd resources and used by others to study development of computational thinking and design-based instruction.
This document was shared in the session “Math Phobia and Science Centers: Some International Perspectives” at the 2004 Association of Science-Technology Centers (ASTC) Conference in San Jose, California. It explores math phobia as a cultural (and specifically English-speaking) phenomenon, using examples from his experiences in France and working with the Tuyuka, an indigenous population in Brazil. He links math phobia to a disconnect between math as a part of everyday life and math as a formal process disconnected from one's experiences.