Formal readings and lectures are effective at delivering explanations, but the information they impart can be so densely packed and de-contextualized that students may not make full sense of the content. Arena and Schwartz found that video games have the potential to unlock the expository content delivered by lectures, textbooks, and diagrams.
The Mabee Library at MidAmerica Nazarene University will create a Center for Games and Learning, which will be used to incorporate games in higher education curricula and academic life, with the goal of promoting skills such as collaboration, critical thinking, and strategic thinking. A cohort of faculty members will incorporate games into selected courses, and evaluations will be performed to assess the acquisition of skills through gaming. Following the dissemination of these findings, the Center for Games and Learning will remain as a pioneering campus resource for future faculty to incorporate in their courses.
This project will study two emerging and innovative technologies: interactive, dynamic simulations and touch-based tablet devices. The use of touch-based tablet technology (e.g., iPads) in the classroom is rapidly increasing, though little research has been done to understand effective implementation for learning science. Interactive simulations are now in use across K-16 levels of education, though what impact tablet devices have on the effective implementation of science simulations is not yet known. This project will explore this new frontier in education, over a range of contexts, providing new insight into effective interactive simulation design, classroom facilitation techniques, and the effects of tablet-based simulation use on underrepresented populations in STEM courses. Together, Dr. Emily Moore (PhET, UCB), a leader in interactive simulation design and classroom use, and Dr. Roy Tasker of the University of Western Sydney (UWS), a leader in chemistry education research, science visualizations, and teaching with technology, will research on the new technology frontier in science education - laying the groundwork for future investigations of foundational questions in technology use for learning science. This work has great potential to transform the future of science learning, making it both more engaging and more effective for diverse populations. The research findings will immediately impact 1) the design of new and existing PhET simulations - reaching millions of students and teachers using PhET simulations worldwide - and 2) the development of best practices guidelines for teachers using tablet technology to increase student learning, engagement, and participation in STEM disciplines.
The PhET Interactive Simulations group at the University of Colorado is expanding their expertise of physics simulations to the development of eight-to-ten simulations designed to enhance students' content learning in general chemistry courses. The simulations are being created to provide highly engaging learning environments which connect real life phenomena to the underlying science, provide dynamic interactivity and feedback, and scaffold inquiry by what is displayed and controlled. In a second strand of the project, a group of experienced faculty participants are developing and testing lecture materials, classroom activities, and homework, all coordinated with well-established, research-based teaching methods like clicker questions, peer instruction, and/or tutorial-style activities, to leverage learning gains in conjunction with the simulations. The third strand of the project focuses on research on classroom implementation, including measures of student learning and engagement, and research on simulation design. This strand is establishing how specific characteristics of chemistry sim design influence engagement and learning, how various models of instructional integration of the sims affect classroom environments as well as learning and engagement, and how sim design and classroom context factors impact faculty use of sims. To ensure success the project is basing sim design on educational research, utilizing high-level software professionals (to ensure technically sophisticated software, graphics, and interfaces) working hand-in-hand with chemistry education researchers, and is using the established PhET team to cycle through coding, testing, and refinement towards a goal of an effective and user friendly sim. The collection of simulations, classroom materials, and faculty support resources form a suite of free, web-based resources that anyone can use to improve teaching and learning in chemistry. The simulations are promoting deep conceptual understanding and increasing positive attitudes about science and technology which in turn is leading to improved education for students in introductory chemistry courses both in the United States and around the world.