The purpose of the Lenses on the Sky project is to create diverse skywatching-related experiences for youth across Oregon with a special focus on underserved Hispanic, African American, Native American, and rural communities. The Oregon Museum of Science and Industry (OMSI) will create and implement the project in collaboration with Portland’s Rose City Astronomers amateur astronomy club, Rosa Parks Elementary School in Portland, the Libraries of Eastern Oregon (LEO), and ScienceWorks Hands-On Museum in southern Oregon. The goals of the project are for participants to 1) understand the “big idea” that “humans have used observational tools and techniques across culture and time to understand space phenomena”, 2) recognize the relevance, value, and scientific achievements of NASA missions, and 3) be inspired to learn more about topics related to space science, STEM careers, and NASA. Audiences will explore these topics through three main “lenses” or frames: a NASA lens, a tools lens, and a cultural lens. The project will result in 1) a small, permanent, bilingual (Spanish/English) exhibition in OMSI’s free, public spaces adjacent to its planetarium, 2) three observational astronomy events held in Portland, Southern Oregon, and Eastern Oregon, 3) hands-on activities conducted at partner museums/libraries and shared with other educational institutions, 4) an Educator's Guide including lesson plans aligned with Next Generation Science Standards (NGSS), and 5) over 150 email communications to hundreds of recipients featuring space news updates.
Great Lakes Science Center (GLSC), home of the NASA Glenn Visitor Center, is dedicated to sharing NASA content to inform, engage, and inspire students, educators, and the public. To further this goal, GLSC will develop a digital experience focused on collaboration and teamwork, emphasizing the benefits of a systems approach to STEM challenges. At the recently, fully renovated NASA Glenn Visitor Center, GLSC visitors will embark on an exciting mission of discovery, working in teams to collect real data from NASA objects and experiences. Mobile devices will become scientific tools as students, teachers, and families take measurements, access interviews with NASA scientists, analyze results from Glenn Research Center (GRC) test facilities, and link to NASA resources to assemble mission-critical information. This initiative will provide experiences that demonstrate how knowledge and practice can be intertwined, a concept at the core of the Next Generation Science Standards. GLSC’s digital missions will engage students and families in STEM topics through the excitement of space exploration. In addition, this project has the potential to inform the design of future networked visitor experiences in science centers, museums and other visitor attractions.
Prince George’s County Public Schools (PGCPS) Howard B. Owens Science Center (HBOSC) will infuse NASA Earth, Heliophysics, and Planetary mission science data into onsite formal and informal curriculum programs to expand scientific understanding of the Earth, Sun, and the universe. The goal of the project is to develop a pipeline of programs for grades 3-8 to enhance teacher and student understanding of NASA Science Mission Directorate (SMD) Earth, Planetary, and Heliophysics science and promote STEM careers and understanding of NASA career pathways using the HBOSC Planetarium, Challenger Center and classrooms. During the school year, PGCPS students in Grades 3 through 8 will experience field trip opportunities that will feature NASA Sun-Earth connection, comparative planetology, Kepler Exoplanet data, and NASA Space Weather Action Center data. PGCPS Grade 3 through 8 teachers will receive summer, day, and evening professional development in comparable earth and space science content both engaging the HBOSC Planetarium and Challenger facility and its resources. The students and teachers in four PGCPS academies (Grades 3 through 8) will serve as a pilot group for broader expansion of the program district-wide. ESPSI will provide opportunities for county-wide participation through community outreach programs that will promote NASA Earth, Heliophysics, and Planetary mission data. Community outreach will be offered through piloting the Maryland Science Center outreach program to four of PGCPS southern located schools and monthly evening planetarium shows along with quarterly family science nights that will include guest speakers and hands-on exhibits from the local science community and Goddard Space Flight Center (GSFC).
Our Place in Space (OPIS), an inquiry-based curriculum in space science, observation, and exploration for middle school teachers, will be developed by the Museum of Science and Industry (MSI) Chicago, through a committed partnership with the Advanced Concepts Office in NASA's Marshall Space Flight Center (MSFC) and with endorsement from the Chicago Public Schools. The goals are to:
Design, test, and deliver OPIS curricula for a year-long course at MSI for science teachers (grades 4-8) that focuses on space observations and explorations using NASA assets and inquiry processes that combine informal learning traditions with the rigor of national and state education standards for middle school science;
Facilitate teachers' use of NASA's digital media and visualization technologies;
Modify and disseminate OPIS curriculum to 248 out-of-school program leaders and 10,440 youth at community sites affiliated with MSI’s Science Minors Clubs located throughout northeastern Illinois and northwestern Indiana.
The MSFC Advanced Concepts Office will coordinate the participation of MSFC scientists who will ensure accuracy of content, keep the curriculum up to date with emerging technologies and discoveries, and mentor OPIS teachers and Science Minors Clubs’ leaders through NASA's Digital Learning Network. The OPIS curriculum is aligned with Next Generation Science Standards, and will enable teachers to integrate instruction in the fundamental principles of space science with cross-cutting concepts while also presenting engineering and design challenges that exercise students' inventiveness, critical thinking, and problem-solving skills. Design challenges in OPIS encourage teachers and their students to wrestle with the same engineering problems that intrigue NASA scientists themselves.
The Wild Center will develop, implement, and disseminate a model program, VTS in Science, for the science museum field adapted from the Visual Thinking Strategies (VTS) teaching method. In partnership with several museums, educators, and a consulting firm, the Wild Center will use current research to develop informal and formal learning programming; implement a model professional development program for science museum professionals and elementary teachers; provide educators resources and knowledge to develop VTS in Science programming relevant to daily teaching—including a VTS in science toolkit; facilitate a long-term collaborative process and model school-museum partnership among a diverse group of education providers; and evaluate the effectiveness of the VTS in Science program in order to promote replication by science museums nationally.
Sam Noble Oklahoma Museum of Natural History will develop traveling natural history science curricula kits for K-12 students. This project will expand the museum's outreach program, featuring STEM (Science, Technology, Engineering, and Mathematics) content with a focus on Oklahoma geology, life, and cultural science. The museum will share the educational kits, featuring materials aligning with state educational standards, with teachers across Oklahoma. The museum's digitization of the kits will increase the capacity and number of teachers who have access to the material and enable students to experience high-quality STEM educational opportunities offsite and online.
The Greensboro Children's Museum, in partnership with the University of North Carolina at Greensboro and Guilford County Schools, will develop and implement the "Grow It, Cook It, Eat It" project to study the impact of food systems literacy education on the knowledge and behavior of K-2 children in an underserved school. The project will bring food education to a local elementary school where museum educators will work alongside classroom teachers to create and deliver weekly lessons to 60 students based on sustainable gardening practices, kitchen efficacy, attitudes toward fresh, seasonal food, and behavior toward garden work and trying new foods. Participating elementary students will build the beginnings of a skills set that will empower them, and their families,to make smart food choices for a lifetime.
The L.C. Bates Museum will provide 1,700 rural fourth grade students and their families museum-based STEAM (Science, Technology, Engineering, Art, and Mathematics) educational programming including integrated naturalist, astronomy, and art activities that explore Maine's environment and its solar and lunar interactions. The project will include a series of eight classroom programs, family field trips, TV programs, family and classroom self-guided educational materials, and exhibitions of project activities including student work. By bringing programs to schools and offering family activities and field trips, the museum will be able to engage an underserved, mostly low-income population that would otherwise not be able to visit the museum. The museum's programming will address teachers' needs for museum objects and interactive explorations that enhance student learning and new Common Core science curriculum objectives, while offering students engaging learning experiences and the opportunity to develop 21st century leadership skills.
Armory Center for the Arts will develop, deliver, and evaluate "Artful Connections with Science," an innovative new visual arts-science integrated curriculum for the fourth and fifth grade levels in the Pasadena and Los Angeles Unified School Districts. "Artful Connections with Science" will provide support to the education community at a critical juncture as California adopts the Next Generation Science Standards. It will also enable the center to build organizational capacity for the delivery of arts-integration curriculum in multiple districts, thus increasing sustainability and helping to improve lives through the power of art.
Perot Museum of Nature and Science will expand its museum-based professional development offerings for Dallas-area teachers by launching, testing, and evaluating a scalable Perot Museum STEM (Science, Technology, Engineering, and Math) Teacher Institute and Mentor Program. Participating K-12 teachers will attend a weeklong, intensive "Summer Academies at the Museum" designed to measurably improve the quality of formal science instruction in public, charter, private, and parochial schools by creating and sustaining a collaborative formal and informal STEM learning community. The museum aims to increase teachers' knowledge of science content as well as their competence, confidence, creativity, and consistency in science instruction through this program, and ultimately increase interest and engagement among their students in STEM subjects.
The Clay Center for Arts and Sciences of West Virginia will create professional learning communities of teachers and after-school staff serving 7th grade students at seven partner schools using digital storytelling as a tool to explore energy-related topics impacting their communities. West Virginia's role as a leading coal producer and the impact of natural gas drilling served as strong influencing factors in the creation of this STEAM project, titled emPOWERed Stories. Students will create an exhibit that incorporates these digital stories. The results will inform the broader field on ways to better blend formal and informal education experiences to become more potent learning environments.
Science Museum of Minnesota will create three live theater productions highlighting current laboratory and field research studies of science issues with strong topical relevance to families with school-age children, school groups, and adult lifelong learners. Shows will align with the appropriate grade levels of the Minnesota Science Education Standards in three age levels: early elementary (grades 1–3), upper elementary and middle school (grades 4–8), and high school students and adult learners. The shows will be performed in daily rotation at the museum to entertain, inform, and challenge visitors to reflect on current science issues. Theater staff will disseminate the shows through various national conferences, websites, and professional associations, enabling colleagues nationwide to download the scripts free of charge and present topical science issues at their own museums.