The concept of connected learning proposes that youth leverage individual interest and social media to drive learning with an academic focus. To illustrate, we present in-depth case studies of Ryan and Sam, two middle-school-age youth, to document an out-of-school intervention intended to direct toward intentional learning in STEM that taps interest and motivation. The investigation focused on how Ryan and Sam interacted with the designed elements of Studio STEM and whether they became more engaged to gain deeper learning about science concepts related to energy sustainability. The
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
This paper provides a brief overview of the ideas and principles underlying the connected learning movement, highlighting examples of how libraries are boosting 21st-century learning and promoting community development by partnering with a range of organisations and individuals to incorporate connected opportunities into their programmes. The connected learning movement supports interest-driven, peer-supported, and academically oriented learning for youth by promoting the core values of equity, participation, and social connection. By connecting formal and informal learning organisations with
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell
Funded jointly by the Institute of Museum and Library Services (IMLS) and the MacArthur Foundation, in partnership with the and Association of Science-Technology Centers (ASTC) and Urban Libraries Council (ULC), Learning Labs in Libraries and Museums supports the planning and design of 24 learning labs in libraries and museums nationwide. The inaugural cohort of 12 sites ran from January 2012 to June 2013, and a second cohort of 12 additional sites began in January 2013 and will extend through June 2014. In addition to the primary awardees, most grants included additional institutional partners, resulting in a rich community including over 100 professionals from approximately 50 participating organizations (libraries, museums, universities, and community-based organizations). The labs are intended to engage middle- and high-school youth in mentor-led, interest-based, youth-centered, collaborative learning using digital and traditional media. Inspired by YOUmedia, an innovative digital space for teens at the Chicago Public Library, as well as innovations in science and technology centers, projects participating in Learning Labs are expected to provide prototypes for the field based on current research about digital media and youth learning, and build a "community of practice" among the grantee institutions and practitioners interested in developing similar spaces.
This report summarizes evaluative findings from a project titled “What Curiosity Sounds Like: Discovering, Challenging, and Sharing Scientific Ideas” (a.k.a.: “Discovery Dialogues”). The project, a Full-Scale development project funded by the National Science Foundation as part of its Advancing Informal Science Learning (AISL) program, explored new ways to actively engage both lay and professional audiences, and foster meaningful communication between scientists and the general public. Appendix includes survey and interview questions.