The overarching purpose of the Climate Literacy Zoo Education Network is to develop and evaluate a new approach to climate change education that connects zoo visitors to polar animals currently endangered by climate change, leveraging the associative and affective pathways known to dominate decision-making. Utilizing a polar theme, the partnership brings together a strong multidisciplinary team that includes the Chicago Zoological Society of Brookfield, IL, leading a geographically distributed consortium of nine partners: Columbus Zoo & Aquarium, OH; Como Zoo & Conservatory, St. Paul, MN; Indianapolis Zoo, IN; Louisville Zoological Garden, KY; Oregon Zoo, Portland, OR; Pittsburgh Zoo & PPG Aquarium, PA; Roger Williams Park Zoo, Providence, RI; Toledo Zoological Gardens, OH, and the organization Polar Bears International. The partnership leadership includes the Learning Sciences Research Institute at the University of Illinois at Chicago, and the Earth System Science Center at Pennsylvania State University. The partnership is joined by experts in conservation psychology and an external advisory board. The primary stakeholders are the diverse 13 million annual visitors to the nine partner zoos. Additional stakeholders include zoo docents, interpreters and educators, as well as the partnership technical team in the fields of learning innovations, technological tools, research review and education practice. The core goals of the planning phase are to a) develop and extend the strong multidisciplinary partnership, b) conduct research needed to understand the preconceptions, attitudes, beliefs, and learning modes of zoo visitors regarding climate change; and c) identify and prototype innovative learning environments and tools. Internal and external evaluations will be conducted by Facet Innovations of Seattle, WA. Activities to achieve these goals include assessments and stakeholder workshops to inventory potential resources at zoos; surveys of zoo visitors to examine demographic, socioeconomic, and technology access parameters of zoo visitors and their existing opinions; and initial development and testing of participatory, experiential activities and technological tools to facilitate learning about the complex system principles underlying the climate system. The long-term vision centers on the development of a network of U.S. zoos, in partnership with climate change domain scientists, learning scientists, conservation psychologists, and other stakeholders, serving as a sustainable infrastructure to investigate strategies designed to foster changes in public attitudes, understandings, and behavior surrounding climate change.
In 2009, The HistoryMakers was awarded a four-year grant from The National Science Foundation (DRL-0917612) to create ScienceMakers: African Americans and Scientific Innovation (ScienceMakers). ScienceMakers builds upon The HistoryMakers’ extant oral history archives by allowing for new interviews with 180 of the nation’s top African American scientists and facilitating dissemination of the information. The overall goal of this endeavor is to increase awareness in the general public of the contributions of African American scientists (i.e., short-term outcomes), thereby ultimately leading to
As an outreach program, Barb Finkleman of All American Cablevision of Columbus, OH arranged a field trip to the public access video studio in the basement of the Main Branch of the Columbus Public Library system in 1980 so that inner city children could see and meet music video producer Marshall Barnes and view his creation, The Last Communication through an arrangement with Cowtown Records and Videoworks and the Columbus Public Library. The children, all elementary school aged, listened to Marshall explain his work and the role of a video producer, as well as how a studio works. They then viewed The Last Communication, a 30 minute video animated space rock symphony that had been described by some as "Saturday morning cartoons for children on Mars". Of special note, the children were mesmerized and at one point, spontaneously began singing with the music in one section, prompting surprise from both Marshall and Barb but confirming Marshall's suspicions that children will respond to abstract stimulus within certain psychological parameters that can be exhibited aurally and visually. It was the beginning of the concrete data that years later would result in his science of technocogninetics.
DATE:
TEAM MEMBERS:
Marshall BarnesAll American CablevisionCowtown Records and VideoworksColumbus Public Library
Museums continue to invest in and experiment with internet technologies and increasingly with social software environments (i.e., social networking). These technologies have the potential to lead to a number of important intellectual and social outcomes such as learning, community building, and greater public understanding of, in our case, science. It is the possibility of supporting learning in digital environments that is the focus of this research project. In our previous work, online facilitation has emerged as a big deal and perhaps determines successful online museum environments from unsuccessful environments. To study facilitation, we seek to understand facilitation styles and their outcomes in two distinct but representative museum environments. The first, Science Buzz at Science Museum of Minnesota, is a popular website identified by the field to be exemplary because of its educational value and its use of Web 2.0 functionality. The second case is the more distributed use of social software at the North Carolina Museum of Life and Science (MLS). Instead of creating learning platforms that are hosted internally, MLS is experimenting with building learning communities where people are already gathering on the web like Flickr, Twitter, and YouTube. We anticipate being able to identify clear, replicable facilitation styles and to identify outcomes associated with those styles.
The Exploding Optic Incredible was an experiment in expanding the boundaries of art and music with science and technology. Ostensibly a multi-media rock concert as a fund raiser for Marshall Barnes' drug free creativity efforts, it took Andy Warhol's Exploding Plastic Inevitable concept of the 1960s into unchartered territory driven by Marshall's inspiration through discussions with Omni magazine's Dick Teresi and Pamela Weintraub and Gene Youngblood's book, Expanded Cinema. Marshall incorporated 1970s era slide and film projection light show effects, with dance lights, massive strobes, spotlights, and big screen video projection that showed customized and original video special effects while bands performed, and music videos in-between accompanied by lighting effects. The first multi-media rock concert of the 1990s, the January 18, 1990 event at the Newport Music Hall was also a test for the public's reaction to over stimulation through sight and sound, the results leading to exploration and ultimate creation of psychoactive entertainment technology later that year and the formation of new technological architectures for entertainment and learning that have yet to be presented but exist in design form.
Marshall Barnes was chosen by Larry Bock, founder of the USA Science and Engineering Festival as a late addition to the USASEF after viewing Marshall's impressive SuperScience for High School Physics activities for National Lab Day and his emphasis on advanced concept science and technologies. Marshall was given free booth space to set-up an exhibit that featured what is now being called "STEAM" or Science, Technology, Engineering, Art, Math and was fairly interactive. Marshall's booth emphasized his actual research that the visitors could take part in or analyze themselves. He had a VCR, TV, CD player, MacBookPro laptop and his own invention - the Visual Reduction Window. There were four elements to the exhibit. There was a TV monitor that showed a scene from a movie that you could view with 3D glasses for TV that Marshall invented that work even with one eye closed. At different times that same monitor would feature footage from an experiment that Marshall conducted to produce one of Nikola Tesla's ideas that Tesla never accomplished - a wall of light. This same footage could be analyzed by the visitors - frame by frame, on the Mac computer to see exactly how the principle of resonance produced the wall of light from the build-up of reflections off a physical wall created by strobe lights. Visitors could also listen to hyperdimensional music that Marshall produced that takes any kind of music to a new listening experience. Based on the concept that music is a coded language with cues and instructions that are cognitively recognizable when translated, Marshall invented techniques and technologies that allow such translations and brought examples for visitors to listen to. They included an upcoming radio show theme and the soundtrack to a documentary on the reality behind Fox TV's FRINGE. The music featured song elements that move around between the speakers and make you feel like the music is alive. The most dramatic of all was the Visual Reduction Window, again invented by Marshall, that made kids look transparent and at times, almost completely invisible. Based on his famous research into invisibility, which is documented at the Santa Maria Experiment exhibit in the Santa Maria Education Visitor's Center in Columbus, Ohio, the effect of real life transparency is stunning and Marshall, the world's leading expert on invisibility research was able to describe the physics behind what he was doing and its applications in the real world. His approach to invisibility is superior to those methods pursued by Duke University and others, trying to do the same with metamaterials, and is based on a completely different model of invisibility that he calls, Visual Density Reduction or VDR. Using VDR techniques, Marshall can make attack helicopters, small gun boats, tanks and many other things invisible, which is why he doesn't reveal the current level of his research, due to National Security reasons. Overall, the exhibit was a wild success and serves as a model for a traveling exhibit for informal science at malls, fairs, science centers, and other festivals.
The Climate Change Toolkit includes a suite of resources that address the science behind climate change while encouraging participants to take action to reduce the effects of climate change. Each resource has been designed to be low cost and easy for educators to reproduce. Contents of the Toolkit include: (1) Ten Hands-on Cart Activities - These hands-on, cart-type science activities for families in an informal education setting or for children in an afterschool setting, engage participants with the science of climate change. The activities are divided into two categories, those that address the science behind climate change, and those that address how individual choices affect the rate of climate change. (2) Four Portable Self-Guided Exhibits Kits - These self-guided science kits use four hands-on activities per kit to explore how climate change is affecting the forest, ocean, urban, and atmosphere environments. Each kit can be packaged in a small bag or box and bundled together with an activity map box for check-out by families in an informal education setting. (3) Public Presentation - CO2 and You is a twenty-minute presentation that provides the option of using interactive clickers to introduce the science behind how fossil fuel consumption leads to climate change. The interactive presentation also explores how simple energy choices can have a positive effect on the climate. (4) Museum Field Trip Program - The Power the Future field trip uses an interactive diagram to explain how carbon based fossil fuels such as coal emit carbon dioxide and contribute to climate change. The program then discusses the need to transition away from carbon based energy sources such as fossil fuels to those that do not emit carbon dioxide, such as wind power. The second section of the program guides visitors through a hands-on inquiry activity where they explore their own windmills.
DATE:
TEAM MEMBERS:
Charlie TrautmannKatie LevedahlAlberto López
Safe Techniques Advance Research – Laboratory Interactive Training Environment (STAR-LITE) is an innovative laboratory safety training created by the National Institutes of Health, Office of Research Services, Division of Occupational Health and Safety, for high school and undergraduate students. The training was designed to incorporate laboratory safety and risk assessment with the architecture of game-based learning. In this respect, STAR-LITE provides student users with a salient educational experience that uses visual and audio clues, strategic thinking, and physical action to enhance the learning experience. The goal of STAR-LITE is to expand the student’s knowledge base with an introduction to safe laboratory and common risk assessment techniques. STAR-LITE comprises a series of pursuit or Quest-based activities that occur in a virtual laboratory environment. Users direct individualized characters, or avatars, to interact and engage with the features in the virtual laboratory to progress through continuous challenges. STAR-LITE provides users with a significant, repeatable educational experience using visual and audio clues, strategic thinking, and physical action to enhance the learning process. This training offers a unique method of instruction by integrating development of critical thinking proficiencies and application of problem solving skills with visualization of consequences, which result from unsafe behaviors. STAR-LITE’s educational content is presented in a virtual laboratory environment in which virtual characters experience exposures to hazardous biological, chemical, and physical hazards with real-life consequences. Student users participate in a series of Quests that require interaction with characters and laboratory equipment. Basic laboratory safety skills and techniques are presented in the training. These skills and techniques include an introduction to potential biological, chemical, and physical hazards that may be present in multi-discipline laboratories; methods to prevent injuries in the laboratory; methods to protect students, colleagues, and the environment from potential hazards in the laboratory; and emergency preparedness and response basics. STAR-LITE was designed to ensure student users walk through a risk assessment process during each Quest. Because STAR-LITE is a digital game-based learning experience, users can repeat the training as many times as they like. The repeatability of this training enhances the student’s learning experience and allows them to pursue different risk assessment decision paths as they progress through the Quest.
Several years ago, Kansas City leaders decided to boost future economic growth by developing science and engineering skills in the area’s work force. There was a problem though: Kansas City’s workers and students weren’t very interested in science and engineering. So, five organizations, including a library and museum, founded KC Science, INC to improve science literacy in the bi-state Kansas City metropolitan region. Partners included the Johnson County (KS) Library as the lead partner; Science City, the region’s premier science museum; KCPT, the local public television station; Science Pioneers, a group that produces educational materials and activities for teachers and students; and Pathfinder Science, an online collaborative community of teachers and students engaging in scientific research. The group received a 2006 Partnership for a Nation of Learners* grant from the Institute of Museum and Library Services (IMLS) and the Corporation for Public Broadcasting (CPB) because the community partnership’s focus on science-related careers and lifelong learning helped build a foundation for an informed citizenry.
This Communicating Research to Public Audiences (NSF 03-509) project in partnership with the American Museum of Natural History seeks to increase public understanding of research being conducted at the Pierre Auger Observatory that will be shown in 22 science centers and available on the web, as well as live interactive presentations by the lead researchers.
DATE:
-
TEAM MEMBERS:
Angela OlintoMark SubbaRaoJames CroninRandall LandsbergVivian Trakinski
The broad purpose of this project is to contribute to capacity-building efforts—to strengthen the evaluation of programs and learning experiences in informal science education (ISE). We focus on improving the quality of summative evaluations, which have been called upon to inform decision-making and practice, contribute knowledge to the field, and help make the case for the value of informal learning. We previously developed a framework that synthesizes key elements of a high-quality summative evaluation. The framework has three dimensions: (a) examine the underlying rationale of the program, exhibition, experience, or intervention being evaluated; (b) balance methodological rigor with sensitivity to the informal context; and (c) prioritize uses of the evaluation by addressing stakeholders’ needs. Evaluators may draw on all three dimensions to provide summary judgments on the value of what was evaluated. We extend our work in two ways: (1) Examine how the framework could be used as a guiding lens for planning or conducting future or current summative evaluations. We will work with partners in informal science institutions to support and document their evaluation activities along the dimensions of evaluation quality, with the intent of improving the framework and creating concrete exemplars of its application in practice. (2) Conceptualize alternative models for enhancing professional training in ISE evaluation. We will research current programs and practices for building technical evaluation capacity, looking for promising and innovative approaches that include apprenticeship or “hands-on” experiences. This 18-month project (January 2015 through June 2016) is funded by the Gordon and Betty Moore Foundation.
Youth Radio, an after-school media production program, consists of a main campus in Oakland, CA, and regional bureaus in Atlanta, GA, Washington, D.C., and Los Angeles, CA. Youth Radio’s model is to engage underserved young people in broadcast journalism, radio and web production, engineering, and media literacy through media projects that are relevant to the students’ lives and communities. In doing so, Youth Radio prepares young people for college programs and careers in media. The organization also supports young people in their transition from school to career through an externship program