A report following the 2016 Environmental Health Summit recommended engaging citizens in creating their own knowledge and solutions, thus ensuring that their concerns are adequately addressed and promoting sustainability of community projects. Indeed, citizen science has the potential to initiate a cascade of events with a positive ripple effect that includes a more diverse future STEM and biomedical workforce. This SEPA proposal involves the establishment of WE ENGAGE – an informal, citizen science-based, environmental health experiential learning program designed in partnership with and for under resourced communities struggling with health and environmental health challenges. Its purpose is to actively engage and build the citizen science capacity of citizens living in a single cluster of three contiguous under resourced, minority Cincinnati neighborhoods where generational challenges continue to plague residents despite the presence of established academic-community partnerships. Our hypothesis is that community-informed, experiential learning opportunities outside of the classroom that are structured, multi-generational, and story-based will encourage a) the active asking, discussion about, and answering of relevant complex health and environmental questions so that individuals and communities can plan action steps to make better health choices and pursue healthier environments, and b) greater interest and confidence in pursuing formal biomedical/STEM education and STEM careers. Our program has three specific aims: 1) We will co-create tailored story- based (graphic novel style) STEM education materials with a community advisory board and offer informal STEM education and research training to our target communities; 2) we will facilitate the application of scientific inquiry skills to improve health via community-led health fairs that use an innovative electronic health passport platform to collect data and through facilitated community discussions of health fair data to generate motivating stories to share; and 3) we will facilitate the application of scientific inquiry skills to foster community pride and activism in promoting healthier/safer built environments via walking environmental assessments. As in aim 2, facilitated discussions will be held to spur future community based participatory research studies and interventions. Critical to our success is the concept of storytelling. Storytelling is a foundation of the human experience. A key purpose of storytelling is not just understanding the world, but positively transforming it. It is a common language. Bringing together STEM concepts in the form of a story increases their appeal and meaning. Later, the very process of community data collection gives individuals a voice. In a data story, hundreds to millions of voices can be distilled into a single narrative that can help community members probe important underlying associations and get to the root causes of complicated health issues relevant to their communities. Through place based, understandable, motivating data stories, the community’s collective voice is clearer—leading to relevant and viable actions that can be decided and taken together. From preventing chronic disease, to nurturing healthier environments, to encouraging STEM education — stories have unlimited potential.
Public Health Relevance Statement:
Narrative WE ENGAGE is an informal citizen science-based, experiential learning program designed in partnership with and for middle schoolers to adults living in under resourced minority communities. Using the power of data collection and storytelling, its purpose is to actively engage citizens in STEM/research education and training to encourage a more diverse future workforce and to sustainably build local capacity to ask and answer complex health and environmental questions relevant to their communities. Further, by engaging citizens and giving them a more equitable stake in the research process, they are better able to discover their own solutions.
DATE:
-
TEAM MEMBERS:
Melinda Sue ButschkovacicSusan Ann Hershberger
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.
The program’s goals are to engage Hispanic learners and families by
empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.
The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.
To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:
Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.
We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
This worksheet provides a brief overview of the different types of goals and objectives that a science communicator might want to prioritize when think about the design of communication activities.
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong.
The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong.
STEM educators are eager to foster long term collaboration with each other, and with schools. At the same time, good working practice by schools, teachers, STEM educators and institutions that involves and engages local communities was discovered, showing the diversified modes of connection which could enhance the sustainability of STEM ecosystem.
We trust that this three-year study with its associated digital maps, provides a useful resource for schools, teachers, students, parents, STEM educators and education policy makers in Hong Kong.
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong.
The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong.
STEM educators are eager to foster long term collaboration with
DATE:
TEAM MEMBERS:
Siu Po LeeDavid FosterThe Croucher Foundation
Fostering greater inclusion in science creates benefits for both science and society. In this Innovations and Development project, the University of Utah will investigate how to sustain and scale the STEM Ambassador Program (STEMAP), begun in 2016 with AISL funding. STEMAP developed an innovative process to train scientists to engage members of the public, who cannot or do not gain access to science via conventional science education venues (such as museums, schools, zoos), by implementing activities in non-traditional settings. The 65 scientists trained by the initial STEMAP effort effectively engaged in over 45 settings including an affordable housing development, a youth residential treatment center, a state prison, a cooking class, a daycare facility, and several senior centers. The number of scientists applying to the program quickly exceeded STEMAP's capacity. Other institutions expressed interest in replicating the training. This project will explore strategies for scaling and sustaining public engagement training to support more scientists who can engage more people in more venues. Outcomes will serve to inform the broader implementation of STEMAP and the efforts of other public engagement programs, many of which face similar scaling and sustainability challenges.
Scaling and sustaining public engagement of science (PES) programs is a central challenge for many in the informal science learning community. This project will explore strategies to scale and sustain the STEM Ambassador Program. Research questions include: (1) How do different program formats increase or restrict program capacity and engagement outcomes? (2) What benefits accrue to scientists and their institutions by participating in public engagement in science activities that might serve as motivators to continue these activities? (3) Are funding and organizational models developed in business and other professional settings applicable to sustaining these programs? To address scalability, this project will explore the effectiveness of three dissemination formats: (1) the creation of a mentorship program for in-person trainees, (2) a train-the-trainer approach, and (3) online training with in-person mentorship. The project team will create an evaluation toolkit with participant surveys, rubrics for observers, and "on-the-spot" assessment tools developed under AISL Award 1811022 to assess the effectiveness of engagement activities delivered by trainees in each of the three formats. To address sustainability, the project team will document the values of public engagement training to both the participating scientists and their institutions via surveys and interviews. Consultants from the business sectors will create a PES Campus Council to explore possible financial, organizational, and leadership plans that will help sustain engagement efforts. Outcomes will be published in peer-reviewed journals and compiled into a dissemination framework to inform actions to scale and sustain STEMAP and other public engagement of science programs to engage more hard-to-reach audiences. Inverness Research will serve as the project's external evaluator.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
In order to work towards greater coherence across different training approaches supporting science communication and public engagement efforts, we present a preliminary framework that outlines foundational science communication skills. This framework categorizes different skills and their component parts and includes: identifying and aligning engagement goals; adapting to communication landscape and audience; messaging; language; narrative; design; nonverbal communication; writing style; and providing space for dialogue. Through this framework and associated practical, research, and evaluative
DATE:
TEAM MEMBERS:
Elyse AurbachKatherine PraterEmily Therese CloydLaura Lindenfeld
Polar Literacy: A model for youth engagement and learning will foster public engagement with polar science. The project targets middle-school aged underserved youth and polar research scientists, with the goal to increase youth interest in and understanding of Polar Regions, and to hone researchers' science communication skills. The project will develop affordable and replicable ways of bringing polar education to informal learning environments, extend our understanding of how polar education initiatives can be delivered to youth with maximum effect, and design a professional development model to improve the capacity for Polar Region researchers to craft meaningful broader impact activities. Polar Literacy will create and test a model which combines direct participation by scientists in after-school settings, with the use of curated polar research data sets and data visualization tools to create participatory learning experiences for youth. Beyond the life of the project funding, many of the project deliverables (including kits, videos, and other resources) will continue to be used and disseminated online and in person through ongoing work of project collaborators.
Polar Literacy: A model for youth engagement and learning will advance the understanding of informal learning environments while leveraging the rich interdisciplinary resources from polar investments made by the National Science Foundation (NSF). The project's key audiences -- polar researchers, informal educators, and out-of-school time (OST) youth in grades 4-7 (ages 9-13) -- will connect through both place-based and internet-based experiences and work collaboratively to generate a flexible, scalable, and transferable education model. The project will 1) design OST kits and resource guides (focused on Polar Literacy Principles) and include "Concept in a Minute" videos designed to highlight enduring ideas, 2) provide professional development for informal educators, 3) synthesize a club model through adaptation of successful facets of existing informal learning programs, and 4) create Data Jam events for the OST Special Interest (SPIN) clubs and camp programs by modifying an existing formal education model. A research design, implemented at four nodes over three years, will answer three research questions to evaluate the impact of professional development on informal educators, as well as the impact of programs on youth, and the effectiveness of the model. In addition to the project team and collaborators who are informal education practitioners, an advisory board composed of experts in youth programming, informal education, and evaluation will guide the project to ensure that it advances the body of informal STEM learning research.
Polar Literacy is an Advancing Informal STEM Learning (AISL) Innovations in Development project in response to the Dear Colleague Letter: Support for Engaging Students and the Public in Polar Research (NSF 18-103). Polar Literacy is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. This project has co-funding support from the Antarctic section of the Office of Polar Programs.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Janice McDonnellOscar SchofieldCharles LichtenwalnerJason Cervenec
Despite the ubiquity of Artificial Intelligence (AI), public understanding of how it works and is used is limited This project will research, design, and develop innovative approaches focusing on Artificial Intelligence (AI) for under-represented youth ages 14-24. Program components include live social media chats with AI leaders, app development, journalistic investigations of ethical issues in machine learning, and review of AI-based consumer products. Youth Radio is a non-profit media and tech organizations that provides youth with skills in STEM, journalism, arts, and communications. They engage 250 youth annually through free after-school classes and work shifts. Participants are 90% youth of color and 80% low income. Project partners include the MIT Media Lab which developed App Inventor which allows novice users to build fully functional apps. Staff from Google will serve as a project advisor on the curriculum. The project has exceptional national reach through the dissemination of its media and apps through national outlets such as NPR and Teen Vogue as well as various platforms including online, on-air, as well as presentations, publications, and training tools. The project broadens participation by engaging these low income youth of color in developing skills critical to the workforce of the future. It will help prepare an upcoming generation of Artificial Intelligence creators, users, and consumers who understand the technology and embrace and encourage its potential.It will give them the necessary knowledge and opportunities for careers in an AI-driven future.
This project is grounded in sociocultural learning theory and practice and is interdisciplinary by design. The theoretical framework holds that Computational Thinking plus Critical Pedagogy leads to Critical Computational Literacy. Also, Digital Age Civics plus Participatory Culture leads to Civic Imagination helping youth build a better world through technology. The driving research questions include: What do underrepresented youth understand about AI and its role in society? What are the ethical dilemmas posed by AI from their vantage point? What are the features of an engaging ethics-centered pedagogy with AI? What impact do the AI products developed by the youth have on the target audience? The research design will use ethnographic techniques and design research to study and analyze youth learning. Data sources will include baseline surveys, audio recordings and transcriptions from learning sessions with the participants, research analytic memos, focus group interviews, student-generating artifacts of learning and finished products, etc. The design-based approach will enable systematic, evidence-based iteration on the initiative's activities, pedagogical approach and products. An independent summative evaluation will provide complementary data and perspective to triangulate with the research findings.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Elisabeth SoepEllin O'LearyHarold Abelson
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.
This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Water is an essential, basic need. It is the sustenance for living organisms. For many Native American communities, like the Ojibwe tribes of Minnesota, water is a sacred valuable life source that permeates all aspects of their culture. In these communities, water stories are often used to communicate the value and impact of water on their lives and the lives of others. These stories signal geohydrologic, sociocultural, and sociopolitical societal shifts over time. This pilot study will explore the feasibility of using Native water stories and informal learning experiences to bring water science and issues of water sustainability to youth and public audiences. A significant outcome of the pilot will be a youth-museum-educator co-created public planetarium show and program based on the water stories collected and archived. This approach is particularly novel. It provides an entry into STEM through a dynamic, multimedia context that typically does not engage youth as co-creators of the experiences. Water Values will give voice and a public platform to youth and their communities to elevate ecological issues that are relevant and timely within their own communities. It will also promote scientific discourse through field experiences, interactions with scientists and STEM professions, and community leadership development. Further, this pilot will also test a reciprocal relationship model among its partners. Analogous feasibility research to the Water Values pilot does not exist in the current NSF portfolio. Therefore, the project will not only contribute to the emerging literature base on the intersectionality of STEM, storytelling and Native cultures, but it will also contribute to broader discourse about water health, access, management, and sustainability.
The pilot study will bring together the long standing gidakiimanaaniwigamig program, with its master teachers who are experts in culturally responsive education for Native American youth, and the Bell Museum, which has decades of experience in developing informal STEM learning programs for a broad community. Thirty-five middle school aged youth, five educators, and over 200 community members will engage in the work. During the summer residential program, youth will be exposed to STEM content and important water science concepts through field-based research and a culturally relevant, placed-based curriculum focused on water and communicating water stories. These experiences will be extended during the academic year through weekend science activities that will focus on the compilation of water stories from Native communities, especially from the Ojibwe tribes of Minnesota, and creatively integrating the stories into a fully operational youth-museum co-created public planetarium program. This capstone planetarium show and program will be piloted at the Bell Museum. With regards to the research, four overarching question will guide the study: (1) How does participation in creating water journey stories increase Native students' motivation to learn and engage with STEM, (2) How does participation in creating and presenting water journey stories build change in sociopolitical awareness among Native students? (3) How do Native community members engage with water stories for sociopolitical change and greater participation in STEM? and (4) How does collaboration between gidakiimanaaniwigamig, the Bell, and the UMN impact STEM interest and participation in students and a Native community for transformative experience? Data will be collected from the youth participants, instructors and leaders, and community members. These data will be collected from content surveys, student logs, self-reported intrinsic motivation instrument, observations, and artifacts. The results will be disseminated through various mechanisms within and beyond the target communities. Formative and summative evaluations will inform that work and will be led by an external evaluation firm, Erikkson Associates.
This feasibility study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Bhaskar UpadhyayDiana DalbottenJonee Brigham