Skip to main content

Community Repository Search Results

resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
DATE: -
resource project Media and Technology
This project will bring STEM content knowledge to visitors to Cuyahoga Valley National Park via mobile device applications. Visitors will be able to use their mobile phones to access details about Park features (such as where they are in the park, what they are looking at, and where are related features), supporting just-in-time STEM learning. Cuyahoga Valley National Park receives around 2.5 million visitors every year and experiences multitudes of inquiries. Until this project, visitors were subjected to less than optimum signage for information and background about a given feature that may or may not be of interest to them. In this project, knowledge building information will be selected by the visitors and delivered to them with convenience and speed. The data base supporting this effort will provide the visitor with identification and the history of park features as well as more in depth knowledge building information while they are in the park and after the leave, providing a more holistic experience than is currently available. The investigators will build the system in parts, testing the feasibility at each stage and evaluating affective and cognitive outcomes of each portion. Research questions that will be addressed in the course of this project include: (1) What outcomes associated with use of this GPS-base system could inform future development and implementation? and (2) What contributions do these GPS-based mobile learning applications have on informal science learning as understood within the Six Strands of Informal Science Learning? It is expected knowledge generated in this project will stimulate additional programing for increasing efficacy and use in other widely ranging venues. If successful, it is easy to imagine how this STEM knowledge-building application could be extended for use in other venues across the country.
DATE: -
TEAM MEMBERS: Richard Ferdig Ruoming Jin Patrick Lorch Annette Kratcoski
resource project Professional Development, Conferences, and Networks
This conference at Arizona State University is an early-stage activity inspired by the upcoming 2016 - 2018 bicentennial of the conception, writing and publication of Mary Shelley's "Frankenstein - or The Modern Prometheus." That book, and the dozens of films produced subsequently, have provoked questions for researchers and citizens that have endured for two centuries and are relevant today. - How have we gone from a world in which Mary Shelley could watch public demonstrations of voltaic power on dead animals to one in which the dissection of animals in classrooms is frowned upon, but the creation of new life forms via an international synthetic biology competition (iGEM) is celebrated? - How do literary, artistic and other cultural portrayals of science and engineering inspire and inflect STEM research? - What steps do contemporary scientists and engineers need to take in order to proceed with their innovative activity in a responsible fashion? - What role do lay citizens have in making decisions about science and technology?- How can we understand the broad relationship between creativity and responsibility? The convening brings together a USA and international group of educators in informal science education and multi-disciplinary scholars who study various aspects of the interactions of science, technology and society (STS). This team of natural and social scientists, engineers, museum professionals (Museum of Science, Boston (MOS); Science Museum of Minnesota (SMM)), artists and humanities scholars will begin to formulate plans for producing exhibits, educational programs and demonstrations, fiction and nonfiction writing contests, performances, and curricula that explore science education, ethics and artistry. An overarching goal is to establish a process that could create a national and global network of collaborators to plan programs worldwide and establish new professional collaborations of researchers beyond the bicentennial. The workshop, a first step toward a possible larger initiative, could be significant both for the public's engagement with contemporary issues of science and society and for stimulating new inter-disciplinary research on such issues.
DATE: -
TEAM MEMBERS: Edward Finn David Guston
resource project Media and Technology
This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille, developed and studied by the Concord Consortium, is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, developed and studied by Numedeon, Inc., an educational virtual word in which students can engage in a wide variety of science activities and games. Genivers has been extensively researched in its implementation in the middle school science classroom. Research on Whyville has focused on how the learning environment supports the voluntary participation of students anywhere and anytime. This project seeks to develop an understanding of how these two interventions can be merged together and to explore mechanisms to create engagement and persistence through incentive structures that are interwoven with the game activities. The project examines the evidence that students in middle schools in Boston learn the genetics content that is the learning objective of GeniVille. The project uses an iterative approach to the modification of Geniverse activites and the Whyville context so that the structured learning environment is accessible to students working collaboratively within the less structured context. The modification and expansion of the genetics activities of the project by which various inheritance patterns of imaginary dragons are studied continues over the course of the first year with pilot data collected from students who voluntarily engage in the game. In the second year of the project, teachers from middle schools in Boston who volunteer to be part of the project will be introduced to the integrated learning environment and will either use the virtual learning environment to teach genetics or will agree to engage their students in their regular instruction. Student outcomes in terms of engagement, persistence and understanding of genetics are measured within the virtual learning environment. Interviews with students are built into the GeniVille environment to gauge student interest. Observations of teachers engaging in GeniVille with their students are conducted as well as interviews with participating teachers. This research and development project provides a resource that blends together students learning in a computer simulation with their working in a collaborative social networking virtual system. The integration of the software system is designed to engage students in learning about genetics in a simulation that has inherent interest to students with a learning environment that is also engaging to them. The project leverages the sorts of learning environments that make the best use of online opportunities for students, bringing rich disciplinary knowledge to educational games. Knowing more about how students collaboratively engage in learning about science in a social networking environment provides information about design principles that have a wide application in the development of new resources for the science classroom.
DATE: -
TEAM MEMBERS: Paul Horwitz Jennifer Sun
resource project Public Programs
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
DATE: -
resource project Media and Technology
This project is making novel use of familiar technology (smartphones and tablets) to address the immediate and pressing challenge of affordable, ongoing, large-scale museum evaluation, while encouraging museum visitors to engage deeply with museum content. Using a smartphone app, museum visitors pose questions to a 'virtual scientist' called Dr. Discovery (Dr. D). Dr. D provides answers and the chance to complete fun mini-challenges. The questions visitors ask are gathered in a large database. An analytics system analyzes these data and a password-protected website provides continuous, accessible evaluation data to museum staff, helping them make just-in-time tweaks (or longer term changes) to exhibit-related content (such as multimedia, lecture topics, docent training, experience carts, etc.) as current events and visitors' needs and interests change. The intellectual merit of this project is that it is building evaluation capacity among informal educators, advancing the fields of visitor studies, museum evaluation, informal science learning, and situated engagement, and is contributing to the development of novel evaluation techniques in museums. This project has many broader impacts: The Ask Dr. Discovery system is available to any venue that wishes to use or adapt it to their context. By enhancing the visitor experience and improving museum access to data for evaluation and data-driven decision making across the country, Ask Dr. Discovery has both a direct and indirect impact on museums and visitors of all types. This project is also training the next generation of STEM and education innovators by employing a diverse team of undergraduate students.
DATE: -
TEAM MEMBERS: Judd Bowman Catherine Bowman Brian Nelson
resource project Public Programs
Earth Partnership: Indigenous Arts and Sciences (EP) will develop and refine a model for integrating Indigenous and informal and formal K-20 educators in ecological restoration, project-based learning and professional development. EP will involve participants in Native habitat restoration on community spaces, school grounds and nearby natural areas as a context for intergenerational STEM learning across age, ecosystem, discipline, learning style, culture and place. EP integrates Native knowledge and core values including relationship, reciprocity, respect and responsibility with Western STEM concepts and processes. The project will integrate the expertise of university social, physical, life and learning scientists and community and tribal practitioners to design, develop and test informal STEM learning incorporating ecological restoration, citizen science and cultural diversity. EP grows out of a teacher professional development model funded by NSF and is a network that now includes participating individuals and organizations from many states. This network will enhance dissemination and provide a foundation for a larger project growing out of the results of this project. EP will build capacity of Native and non-Native informal educators and citizens to work together to generate engagement among young people and adults with ecological STEM learning and stewardship. The approach will integrate culturally authentic resources, inquiry and citizen science process skills (e.g., data collection, analysis, ecological restoration, water stewardship) in multiple learning settings. Stronger multicultural, intergenerational and community partnerships will be supported to restore aquatic and terrestrial habitats through community-based stewardship projects and Service Learning. Through EP, Native youth will be encouraged to explore STEM careers that will meet future workforce needs for managing tribal resources and become knowledgeable citizens able to use critical thinking and analysis of STEM-related issues in their communities. The project will use a developmental evaluation approach to assess project planning processes and outcomes of educational programs.
DATE: -
TEAM MEMBERS: Cheryl Bauer-Armstrong Naomi Tillison Maria Moreno Delores Gokee-Rindal
resource project Exhibitions
The project "Microetching of the Human Brain" endeavors to create the most comprehensive illustration of the human brain that has ever existed. Investigators will utilize reflective microetching, a process combining mathematics and optics to create an art piece that evolves based on the position of the viewer. Microetching allows the depiction of very complex brain activity at incredibly fine detail. The final piece will be a wall-sized piece of fine art experienced by a diverse population of thousands daily at the Franklin Institute in Philadelphia. Additionally, this project is an educational opportunity for undergraduate students through direct involvement in the creation of the piece. As this project spans many scientific and artistic disciplines, students will be given an opportunity to learn about fields apart from their own, to broaden their skill set, and to learn how to communicate scientific concepts effectively. This project is a collaboration between neuroscientists, engineers, physicists, and artists to address the question of whether art can be used in the dissemination of scientific understanding to new audiences in a way that gives a visceral sense of the underlying concepts. The human brain is massively complex and challenging to portray clearly. Conveying a sense of its complexity through art may inspire an interest in the brain's scientific content and inspire a new generation of neuroscientists. To produce a piece of fine art capable of sufficient detail to depict the brain at near full complexity, the piece will be executed by a technique called reflective microetching. Microetching is a high-resolution lithographic process that patterns a microtopography of periodic ridges into the surface. These ridges are engineered to reflect a point-source illumination toward a viewer when standing at a specific angle relative to the painting. Similar to darkfield microscopy, this can yield incredibly fine detail. Additionally, the angular dependence of the light adds an extra dimension that can be used to convey time, depth, or motion as the viewer walks past. The piece will feature neurons, glia, vasculature, white and gray matter, and reflectively animated circuit dynamics between areas of the brain corresponding to neural processes involved in visual self-recognition. This will infuse the piece with additional meaning, as the circuits activated within viewers' brains will be the same that are depicted in the artwork.
DATE: -
TEAM MEMBERS: Brian Edwards Gregory Dunn
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help in envisioning the next generation of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that showed the possibilities of the proposed new type of learning technology, and project teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and answer questions about how people learn with technology. Although for years researchers have believed technology could afford anytime-anywhere learning, we still don't understand how learners behave differently across contexts, such as home, school, and in the community, and how to get youth to identify as learners across those contexts. This proposal aims to use mobile devices and strategically placed shared kiosks to 'scientize' youth in two low-income communities. Through strategic partnerships with community organizations, educators, and families, the innovation is to get primary and middle-school students engaging in scientific inquiry in the context of their neighborhoods. Research will help determine how the technology can best be deployed, but also answer important questions about how communities can provide support to help kids think like scientists and identify with science. This project will design and implement ubiquitous technology tools that include mobile social media and tangible, community displays (collectively called ScienceKit) that are deeply embedded into two urban neighborhoods, and demonstrate how such ubiquitous technologies and related cyberlearning strategies are vital to improve information flow and coordination across a neighborhood ecosystem, in order to create environments where children can connect their science learning across contexts and time (e.g. scientizing). A program called ScienceEverywhere comprised of partnerships between tightly connected neighborhood organizations with mentors, teachers, parents, and researchers will help learners develop scientifically literate practices both in and out of school, and will demonstrate students' learning to their communities. Research will consist of mixed methods studies of use of the tools, including iterative design-based research, ethnography, and the use of participant observers from the community; these will be triangulated with usage logs of the technologies and content analysis of microblogs by the learners on their identities and interests. Discourse analysis of interviews with focal learners will orient the qualitative work on identity development, and analysis using activity theory will inform the influences of the social practices and sociotechnical systems on learner trajectories. Formative evaluation will help shed light on if and how the sociotechnical system promotes STEM literacy and STEM identity development.
DATE: -
TEAM MEMBERS: Tamara Clegg June Ahn Jason Yip
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project team aims to explore how to foster learning in socially-networked communities, particularly learning that results in behavior change. Understanding how to foster such learning could have a wide variety of societal impacts, e.g., better fostering science, engineering, mathematical, or design thinking in school or college or on the job, fostering healthy behaviors, helping teens develop pro-social behaviors, and helping people learn to make environmentally-friendly choices as they live their lives. In previous work, this team has developed YardMap, an infrastructure for citizen science that brings together retired adults who are interested in planting and managing their yards in environmentally-friendly ways. YardMap enables social interactions and shared creation of virtual worlds in which participants can try out different ways of managing their yards and see what the downstream effects will be. They also track and display their changing practices and actual yards in ways that are visible to others. YardMap is used by many thousands of participants. In this project, the team is taking YardMap to the next level, using what is known about how people learn and come to change their behaviors to design and refine ways to more directly support individuals in critiquing and improving their behaviors and designs for the common good. What can be learned from the new YardMap will be useful in other fields that focus on helping people change their behaviors in productive ways. The PIs seek to explore how people learn and how to foster learning in socially-networked citizen science communities. Their research addresses how learning happens, how to foster learning, how to design to increase social activity, and how increased interaction with others elevates interest, generates knowledge, and leads to behavior change. Their technological innovation, an infrastructure for citizen science that fosters behavior change, builds on YardMap, an existing infrastructure for citizen science around environmental issues that allows collective data collection and analysis and supports interactive graphing and mapping. Participants design and refine ways of managing their yards in ways that take into account environmental concerns. YardMap enables social interaction and co-creation of a set of virtual worlds for trying out new ideas; learners who are part of the community interact with others in the community, create and refine virtual worlds together, interact with things in the virtual world, manipulate those worlds and collect and analyze data about outcomes, and discuss visual objects that represent real things and practices. As well, individuals track and display their changing practices and actual yards in ways that are visible to others. YardMap can be thought of as a maker movement community focused on yard maintenance; like other maker communities, it encourages participants to create, share and discuss new inventions and practices in a social-networked community setting. Using both what is known about learning in communities and what is known about social drivers of interaction, the team is is extending YardMap to focus on fostering learning and investigating the relationships between learning and behavior change and the influences each has on the other. Much will be learned about how to use social interactions in positive ways to help individuals become more comfortable with behaviors they need to or should take on for health, civic, or educational reasons. What is learned and the technological infrastructure that is created will be directly applicable to other situations where individual behavior changes are needed for change to happen in a social system (e.g., environmental action, changing the culture of an organization, changing norms in a community, perhaps even creating learning communities in formal on-line courses).
DATE: -
resource project Media and Technology
This project will help address the urgent need for a new engineering workforce. Middle school students will be entering a workforce that is increasingly global. They will need not only technical skills but also global competencies including: the ability to investigate the world, recognize perspectives, communicate ideas, and take action. This model integrates engineering with global competencies and will provide new knowledge about how this type of learning experience impacts students and educators. This project builds on the success of the previous Design Squad project funded by NSF and developed by WGBH, which has implemented a national model for engineering education for middle school youth. This project expands the model internationally, connecting U.S. based youth with those in Southern Africa (including South Africa, Botswana, and Swaziland). The project partners are FHI 360, a non-profit organization in 60 countries around the world that helps build capacity for improving lives. They will facilitate the implementation of the afterschool programs in Southern Africa . The US dissemination partners include Promise Neighborhoods Institute, Middle Start, Every Hour Counts, and the National Girls Collaborative Project. Project deliverables include a global engineering curriculum; a web platform with videos, games, activities; an afterschool Club Guide; and a Community of Practice for informal engineering educators. A knowledge building component will provide new evidence on how high quality accessible resources and strategies can impact students' development of global competencies and engineering skills to solve real world problems. An iterative approach will be used to develop the resources including the global engineering afterschool curriculum, Club guide, and other components. The methodology uses a continuous cycle of improvement including: assess/design, test/ implement, synthesize/reflect, and utilize/disseminate. The Summative Evaluation will generate evidence about whether and how this kind of collaborative work builds children's understanding of engineering, motivation to participate, and confidence in taking informed action on behalf of pressing global problems. This will contribute to a larger body of work about whether and how engaging with global, collaborative engineering problems leads to greater self-efficacy for children with very different backgrounds, experiences, and opportunities. This project will add new knowledge about how the well-honed Design Squad model in the U.S. can be expanded with a global context and global partners. This proposal was co-funded by EHR/DRL, Engineering/EEC, and International Science and Engineering. During the project period approximately 125,000 children in the US and 5000 children in southern Africa will be reached. In the long term, with the continued global access to the resources, the reach will potentially be in the millions.
DATE: -
resource project Exhibitions
This award will engage the public on the issues surrounding the interaction and interdependence of human systems and natural systems. Specifically, it will engage them on human impacts and the health of salmon fisheries in the area of Sitka, Alaska. The public in this area includes the citizens of lower portion of Alaska, K-12 students frequenting the Sitka Sound Science Center on field trips, Alaskan Natives, visiting scientists, and tourists who arrive by cruise ships. The exhibit will be placed at the Sitka Sound Science Center and will include a tank of live salmon fish, a computer game, a 10 minute video, and an artist's rendition of the fishing system and salmon life cycle. The team of scientists from the University of Washington coupled with the exhibit developer, Tenji, Inc., and the outstanding artist, Ray Troll should produce an understandable and marvelously picturesque exhibit for the visitors. This will be augmented by the highly capable staff that has considerable experience in translating science concepts to the public. Media broadcasts will broaden the reach of the exhibit. While the impact of this project is not huge in terms of numbers of people, it is an important endeavor as the people in the Sitka area of Alaska will understand their role in the food system for themselves and for the many other parts of the world. Furthermore, the cruise line visitors will derive an understanding of the fragile environment of the salmon ecosystem.
DATE: -
TEAM MEMBERS: Daniel Schindler