This infographic presents a visual summary of a user study of the InformalScience.org website, which was conducted in 2016. The study used online surveys, task-based interviews, and web analytics to explore the following questions: (1) Who are the site's users and what content do they value? (2) Does the site clearly convey its purpose to visitors? and (3) Are users able to navigate the site and use search tools effectively?
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Broad Implementation project would scale up the CryptoClub Project, an afterschool and online program designed to engage middle school youth in mathematics and cryptography. The project builds on previous successful work and evaluation that is ready for scale up using a train-the-trainer model implemented through a partnership with the National Girls Collaborative. The project will train 160 new CryptoClub leaders who will then train 800 new leaders at 20 hub sites reaching 9600 students. In addition, professional development modules and webinars will continue to refresh leader skills. Other project components include an online multiplayer cryptography game, weekly challenges through social media, and digital cryptology badges for students.
The research uses a think-aloud method with students as they actually attempt to solve the cryptology problems using mathematical thinking. Three think-aloud studies will be performed during the Project. The research team will code transcripts of the interviews for evidence of the mathematical thinking intended to be addressed by each activity, as well as capturing unexpected kinds of thinking. Tasks will also be rated according to the type of knowledge elicited. A written report will include statistical analyses of the think-aloud and interview responses, interpreted in light of the overall CryptoClub goals. The findings will contribute to both future research efforts and practice. The evaluation by EDC uses a quasi-experimental design, which assesses project outcomes for trainers, leaders, students, and Internet users. EDC will also investigate the fidelity to the CryptoClub model as it is scaled up. These studies have strong potential for informing numerous other projects that are at a stage where scale up is under consideration.
This project formed a partnership between a research team with experience in computer science (CS) education and learning sciences research and a newly fashioned practitioner team focused on building a grassroots, informal, volunteer group created to help women help themselves and others learn to write computer code. This research-practitioner partnership had a two-pronged focus, first on improving the program offered to learners through making adjustments based on research findings, and second on investigating the phenomenon of how women in the workforce informally learn CS skills that enable them to rewrite their career paths to contribute to what we know from research. The context of the study was situated in the virtual community that has formed around the phenomenally successful Salesforce Customer Relationship Management software platform.
This Exploratory Pathways project aimed to fill a gap in the research; we know little about the phenomenon of adult women in the workforce who are patching together resources to learn CS skills with a goal of job enhancement or job change. This project took an ethnographic approach to studying the informal learning (both through online, written resources and through sharing of knowledge with others) of the women involved in a 10-week, virtual Women’s Coaching and Learning group. The organization of this group consisted of learners—novice coders in the Apex language that is used on the Salesforce software platform, of coaches—more knowledgeable coders, and of a steering committee that ran the group and created the informal curriculum followed in the 10-week course.
Our overarching research question in this study was: In what ways are informal CS learning opportunities being used and created by adult women, what are their experiences with those opportunities, and how does this suggest ways to enhance those opportunities in the future to increase effectiveness in broadening access to and engagement in informal CS learning experiences for women?
We broke the question down into a number of sub questions, including:
Sociocultural context: What past gendered interactions do women report that discouraged (or encouraged) them from learning to code? What do interactions look like in female-only coaching and learning groups? In what ways does a coaching and learning group support persistence? What social barriers and supports outside the group affect persistence?
Personal context: What are the characteristics and backgrounds of female administrators who seek out resources to teach themselves to code? What are the motivations for these women to teach themselves to code? What motivates them to seek out and join all-women coding groups?
Physical context: How are women learning to code both through written resources and in virtual, informal coaching and learning classes? What are the conceptual barriers and supports that they encounter, and what works for women in these classes to overcome barriers? What conceptual barriers and supports affect persistence?
Persistence and identity: In what ways does participating in a learning group with female coaching motivate (or not) women to persist in learning to code? How do their goals or reasons for learning to code change through their participation? How does their identity as a “coder” change or shift as they participate?
Our findings for these subquestions are summarized in the “project products” linked to below.
This summative report evaluates the accessibility and efficacy of a project website as a tool for teaching ecosystem science. Edu ran a qualitative study with twelve participants in order to determine the overall usability and learnability of IntotheRift.org – an online textbook offering a virtual field trip to Lake Tanganyika in East Africa. The goal of the study – identify usability issues and also what currently works well. A learnability study focused on learners’ increase in awareness of ecosystem concepts and research scientists working in Lake Tanganyika. An efficacy study evaluated
DATE:
TEAM MEMBERS:
Douglas SpencerSasha MinskyJediah Graham
As part of the Exploratorium’s Indoor Positioning System (IPS) project, we prototyped a crowd-sourced, location-tagged audio app, called Exploratorium Voices, or Open Conversation, that visitors could use on smartphones to listen to short comments from staff, experts and other visitors and to leave their own comments for others to hear. This app was developed with Roundware, an open-source framework that collects, stores, and delivers audio content, integrated with a Wi-Fi IPS that provided location data used to tag audio recordings and determine where a visitor was to play recordings left
The Northwest Passage Project (NPP) is a collaborative effort between the University of Rhode Island (URI), Inner Space Center (ISC), Graduate School of Oceanography (GSO), the film company David Clark Inc., and several other partners, including six Minority Serving Institutions (MSIs) and three informal science education institutions. The project centers on a research expedition into the Arctic's Northwest Passage, which will engage intergenerational cohorts of high school, undergraduate, and graduate students in hands-on research aboard the U.S. tall ship SSV Oliver Hazard Perry (OHP). During the expedition, a professional film crew will produce a two-hour documentary focused on the NPP's innovative model of interdisciplinary informal STEM (science, technology, engineering, and mathematics) learning and highlight the expedition's research, participants, and the sociological issues related to the changing Arctic environment. Because the Canadian Arctic is remote and costly to access, the project will maximize NSF's investment by giving broad audiences access to the science and excitement of the expedition through the documentary. In addition, this informal science learning opportunity will not only engage students with scientists in authentic research, but also train the students to deliver daily live broadcasts from sea to three well-established U.S. informal science education institutions: the Smithsonian National Museum of Natural History (NMNH), the Exploratorium, and the Alaska Sea Life Center (ASLC). The daily broadcasts will also reach the public in real time via the project's interactive website, providing the opportunity for people to post questions to the scientists and students onboard the ship. The NPP has great potential to benefit society by enhancing awareness of the changing Arctic's ecosystems and increasing science literacy. The hands-on research experiences will enhance the college readiness of the participating high school students and encourage the undergraduate students from the six partner MSIs to consider a graduate course of study and/or pursue STEM careers. The graduate students will also be more career-ready, as they gain public communication and leadership skills necessary for 21st century scientists. The Northwest Passage Project is designed to advance knowledge and understanding within the practice of informal science education, as well as in the field of Arctic science. The project goals include: increasing public awareness and understanding of the changing Arctic ecosystem; increase public understanding about Arctic research and the scientific process; increase the Informal Science Education (ISE) field's understanding of the public's learning process when engaged in live interactions with scientists and student 'science communicators'; increase the ISE field's understanding of the value of immersive science experiences and impact on students from underserved and underrepresented populations; and to build or extend the capacity of ISE institutions to make connections between polar scientists, students, journalists and the public. The NPP is creative in that it combines the engagement of students in field-based scientific research, live broadcasts from sea to ISE institutions, and the production of a full-scale documentary for public audiences. A potentially transformative component to the ISE activities involves six Minority Serving Institution partners--Florida International University; University of Illinois, Chicago; California State University, Channel Islands; Texas State University; Virginia Commonwealth University and City College of New York--whose students will have the opportunity for a life-changing experience that may tip the scale toward their interest in STEM careers. Each of these students will develop news stories, host screenings of the film at their respective campuses, and share their experiences with peers, providing visual role models for other underrepresented students, who may never have thought themselves capable of becoming a scientist or science communicator. An additional project goal is to enhance the capacity and infrastructure of the three ISE partner institutions so that they may receive live broadcasts from the Inner Space Center in the future, beyond the funding period of the project. People, Places & Design Research will conduct the project's front-end and formative evaluation; MEM & Associates will conduct the summative evaluation. Some of the key evaluation questions will be: * Have ISE and MSI institution public visitors, who view either the live broadcasts or the documentary film (or both), become more aware of the changing Arctic ecosystem and the importance of scientific research in the Arctic? * What is the relative impact of the live broadcasts compared to the finished documentary, and the strengths and weakness of the respective media in translating the on-board experience? * Does a real environmental and social context for scientific evidence stimulate audiences to become more interested in the role of science/STEM? * Have students gained leadership skills and the ability to communicate science to their peers? * Have students increased their motivation and interest in pursuing STEM careers? This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE:
-
TEAM MEMBERS:
Gail ScowcroftDavid ClarkBrice LooseDwight Coleman
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.
During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
On August 21, 2017, a total solar eclipse will traverse the United States from Oregon to South Carolina. Millions of Americans will witness totality, in which the Moon completely blocks the Sun, and over 500 million people across North America will experience a partial eclipse. In this project, the American Astronomical Society (AAS) will forge an umbrella organization consisting of an eclipse project manager, a centralized website of resources, and a mini-grants program to coordinate and facilitate local and national activities that will educate the public about the science of this rare event. The project will leverage this fascinating display of beauty to engage as many people as possible in the endeavor of science.
This project will involve scientists, educators, and amateur and professional eclipse observers in developing extensive plans for unique outreach activities to reach a significant fraction of the diverse U.S. population. The goal is to use the eclipse, which will generate significant media attention, to educate a broad audience about the associated science and to encourage young people from widely diverse backgrounds to pursue careers in science. Special emphasis will be placed on citizen science projects and on educational activities targeting groups that are underrepresented in STEM disciplines. A mini-grants program will be established to fund efforts specifically targeting underrepresented groups in order to increase their participation. The evaluation plan will focus on the utilization of the materials on the website and the learning gains of participants in specific activities funded by the mini-grants. All lessons learned will be collated in a publicly available formal report and will lay the groundwork for a strategic plan to fully capitalize on the next U.S.-based solar eclipse in 2024. Because this project aligns well with the objectives of multiple NSF directorates, this award is co-funded by the Division of Undergraduate Education and the Division of Research on Learning in the Directorate for Education and Human Resources; the Division of Astronomical Sciences in the Directorate for Mathematical and Physical Sciences; and the Division of Atmospheric and Geospace Sciences in the Directorate for Geosciences.
DATE:
-
TEAM MEMBERS:
Kevin MarvelAngela SpeckShadia HabbalRichard Fienberg
Citizen science engages members of the public in science. It advances the progress of science by involving more people and embracing new ideas. Recent projects use software and apps to do science more efficiently. However, existing citizen science software and databases are ad hoc, non-interoperable, non-standardized, and isolated, resulting in data and software siloes that hamper scientific advancement. This project will develop new software and integrate existing software, apps, and data for citizen science - allowing expanded discovery, appraisal, exploration, visualization, analysis, and reuse of software and data. Over the three phases, the software of two platforms, CitSci.org and CyberTracker, will be integrated and new software will be built to integrate and share additional software and data. The project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects such as those that monitor disease outbreaks, collect biodiversity data, monitor street potholes, track climate change, and any number of other possible topics more possible, efficient, and impactful through shared software.
The project will develop a cyber-enabled Framework for Advancing Buildable and Reusable Infrastructures for Citizen Science (Cyber-FABRICS) to elevate the reach and complexity of citizen science while adding value by mobilizing well-documented data to advance scientific research, meta-analyses, and decision support. Over the three phases of the project, the software of two platforms, CitSci.org and CyberTracker, will be integrated by developing APIs and reusable software libraries for these and other platforms to use to integrate and share data and software. Using participatory design and agile methods over four years, the project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science software and data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects and any number of other possible topics more possible, efficient, and impactful through shared software and data. Adoption of Cyber-FABRICS infrastructure, software, and services will allow anyone with an Internet or cellular connection, including those in remote, underserved, and international communities, to contribute to research and monitoring, either independently or as a team. This project is also being supported by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Gregory NewmanLouis LiebenbergStacy LynnMelinda Laituri
This EAGER project sought to generate early knowledge for the museum field about the capabilities and limitations of an Indoor Positioning System to: 1) automate the collection of visitor movement data for museum research, and 2) enable location-aware applications designed to support museum visitor learning. Working with Qualcomm, Inc., the Exploratorium installed and experimented with an early prototype of a whole-museum, WiFi-based IPS that acquired and processed timestamped location data (latitude/longitude) from mobile test devices, similar to cell phones. The project 1) defined IPS ground
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.
To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.
The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.