The Educational Film Center (EFC) is developing a science, engineering, and technology careers exhibit for distribution to science museums and technology centers. The core of the exhibit kiosk, with related career graphics surrounds, is SET/QUEST, an interactive multimedia program for both Macintosh and PC/Windows using CD-Rom as the full motion video source. Teens and preteens will enter an interactive exploration of thirty careers with first person video profiles of people in science and engineering; animated/reality video simulations of a work experience in these fields, decision screens, and a database of over 200 more science and math-based professions. The documentary profiles, database, and a personal interest career match component will also be developed in alternative media formats (video, audio, print) for broad distribution to community and youth education networks, schools, and libraries. Specific emphasis in this project is being placed on reaching and attracting female, minority, and disabled youth. A parent outreach component has been developed and will be implemented by the Directorate of Education & Human Resources Programs of AAAS. The concept of the parent effort is to work directly with and through the national offices of four major national organizations with different institutional community roots -- Science Museums, Public Libraries, Schools, and Community Based Organizations -- to involve parents and families with SET Project materials and to provide them with information with which they can foster their children's pursuit of science and math education and careers in these fields. Initial efforts will be conducted in 18 cities. The project is a collaborative endeavor among three organizations: The Educationa l Film Center which will be responsible for management and development/production of the software and documentary video profiles; The New York Hall of Science which will be responsible for the exhibit kiosk and graphics, will design and develop the student workbook and user installation print, will serve as the principal test site for the exhibit, and will advise on software, interactive multimedia design, and installation options; and COMAP which will be responsible for direct involvement of the Advisory Board, for selecting and hiring content consultants, for assuring the accuracy of the science and math content, for formative and summative evaluation, and for developing and preparing community leader and school users guides for publication. Stephen Rabin, President of EFC, will serve as PI for the project.
The proposed conference will bring together leading national and international researchers and practitioners from developmental and cognitive psychology, game design, and media to examine how learning transfers from video game play to formal and informal learning. The conference will convene in New York City and serve to lay the foundation for an interdisciplinary New York-based community of researchers and practitioners interested in examining the implications of video game play on learning. Invited participants will address cognitive skills and content knowledge that children and adolescents acquire and refine during video game play; game features that captivate and promote skills development among game players; and evidence of skill and content knowledge transfer from video game play to informal and formal learning. Discussion of these issues will culminate in specification of the most appropriate research agenda to investigate the academic potential of video game play, particularly using those games that children and adolescent players find most compelling. An edited book will be published of the conference proceedings. The audience for this book will be academics, educators, game designers, media professionals, and policymakers interested in understanding the potential of video game learning for formal and informal instruction based on the most current research and practice.
The videodisc-based exhibit, the Powers of Ten in Time, will allow museum visitors to explore the unseen world of natural change - events that occur too quickly or too slowly to be perceived. Through the use of a touch screen and interactive software, users will be able to, in effect, speed up or slow down timeto witness changes that lie outside of the limits of human time perception. Visitors will see scenes such as a forest recovering after a fire, a wall of earth crumbling from erosion, tides coming in and out, the intricate motions of complex machinery and molecules colliding and reacting to produce fire. The videodiscs will contain more than 100 short video segments depicting a wide range of phenomena. We will use time-lapse footage, slow-motion clips and animations to show changes occurring over time periods form 300,000,000 to femtoseconds. Not only will museum visitors be able to watch these video segments at their own pace and in order they choose, they will also be able to learn more about such phenomena through on- screen textual and graphical explanations. The goal of the project is to engage museum visitors with captivating photographic segments, explain the phenomena shown with supplemental text and graphics, and stimulate them to look at the world in a new way - not just with their eyes, but with their minds and imaginations.
The Scientific Reasoning Research Institute at the University of Massachusetts, Amherst will conduct a feasibility study for engaging museum visitors in data analysis through this planning grant. Intellectual Merit: This project builds on the extensive prior work of the PI in developing Tinkerplots software for middle school students. At the same time, it potentially takes advantage of the many museum exhibitions that include various kinds of data but provide no mechanisms for visitors to analyze the data and draw conclusions. This project makes the connection by seeking to demonstrate the proof of concept for the transfer of this data analysis program from the formal to the informal setting. Broader Impact: This project will purposefully test three very different settings -- Museum of Science, Boston, MA; Naismith Basketball Hall of Fame, Springfield, MA; and Missouri Botanical Garden, St. Louis, MO -- to explore the advantages and limitations of this approach in those learning environments. If successful, the software could have very wide application.
This project will research distributed, online fantasy basketball games, which are quite popular with many kinds of players, including informal science education under-represented groups, and which entail some degree of informal statistical reasoning and decision-making strategies. The game is not playing basketball per se, but taking on the role of a team owner or coach who needs to decide how best to compose a team given necessarily limited resources. The research team will provide a method for framing and researching statistical understanding and decision making of expert and novice players, then, based on the research, will develop scaffolded techniques for helping players become more reflective on and adept with the statistical knowledge and decision making strategies they use.
This award provides support for Mr. Kamen to explore the feasibility of developing an interactive educational kiosk (to be named FIRST PLACE), programmed with electronic mathematics and science games and placed in out-of-school area such as shopping malls to reach K-12 children. Students would play the games and be rewards with coupons. This multi- disciplinary project would expand students access to science and mathematics, the learning into the economy, and present learning as a leisure time activity.
This 12-month planning grant will create the foundation for a project based on meaningful, online, game-based learning. Specifically, it will enable the proposer to develop and validate story lines and game characters with middle-school aged children in two summer design institutes. In addition, the proposer will build partnerships with museums and informal learning institutions and develop a plan to work with these partners for the dissemination, promotion, use and evaluation of the future games. Intellectual Merit: The project will develop standards-linked design specifications for play scenarios, game characters and real-world, problem-based activities across STEM domains. These design specifications should be of significant value for future educational game development. Children will serve as "informants" during game design, providing input where most effective. This involvement in the planning process is critical to the success of the games, and should ensure the desired "kid appeal." Broader Impact: The strategy of involving advisory groups of children, including those at-risk, will allow the project to factor in ways to engage audiences underrepresented in the sciences by tailoring characters and activities that ensure broad appeal. In addition, the approach of solving puzzle-like problems embedded in a game's story narrative should appeal to both boys and girls. This project will generate a report for publication on the design process and resulting specifications.
TERC Inc. will conduct a one-year proof of concept study that includes the design, development, and research of two prototype science activities for the virtual Blue Mars Science Center located on the Blue Mars 2150 platform developed by Virtual Space Entertainment. Blue Mars is a science fiction-themed virtual world set on Mars far in the future and will be rendered in High Definition, an important incremental step in the development of highly realistic virtual worlds. It is in this virtual world context that the proposed learning activities and research are to be conducted. TERC's research will examine the challenges of learning in virtual environments and which types of tools and interactions can encourage and support collaboration, the results of which will advance both informal and formal learning in virtual worlds. Avatar tracking data, participant observations, interviews, and surveys will be used to study participants. The project has the potential to advance areas of computational visualization systems and cognitive science and will afford an array of learning opportunities using real time data. Millions of visitors to the Blue Mars world will be able to share in an unprecedented range of virtual activities and experiences. It is anticipated that the research will inform the future development of even more advanced immersive interactivity, such as avatar-based models and computationally-oriented interactivity. The study will serve as a basis for both further development of the Blue Mars Science Center and the advancement of research on science learning in virtual worlds. The investigators are interested in continuing to expand as the scientific community evolves in the virtual world. The online world has the potential to become a powerful attractor for the general public to engage in science learning.
DATE:
-
TEAM MEMBERS:
Jodi Asbell-ClarkeTeon EdwardsRichard Childers
In every drop of water, down at the scale of atoms and molecules, there is a world that can fascinate anyone - ranging from a non-verbal young science student to an ardent science-phobe. The objective of Learning Science Through Guided Discovery: Liquid Water & Molecular Networks is to use advanced technology to provide a window into this submicroscopic world, and thereby allow students to discover by themselves a new world. We are developing a coordinated two-fold approach in which a cycle of hands-on activities, games, and experimentation is followed by a cycle of computer simulations employing the full power of computer animation to "ZOOM" into the depths of his or her newly- discovered world, an interactive experience surpassing that of an OMNIMAX theater. Pairing laboratory experiments with corresponding simulations challenges students to understand multiple representations of concepts. Answers to student questions, resolution of student misconceptions, and eventual personalized student discoveries are all guided by a clear set of "cues" which we build into the computer display. Moreover, the ability to visualize "real-time" dynamic motions allows for student-controlled animated graphic simulations on the molecular scale and interactive guided lessons superior to those afforded by even the most artful of existing texts. While our general approach could be applied to a variety of topics, we have chosen to focus first on water; later we will test the generality of the approach by exploring macromolecules such as proteins and DNA. The simulation sofware we have been developing embodies a simple molecular interaction model but requires leading edge computing in order to (1) apply the model to large enough systems to yield simple and realistic behavior, and (2) animate the result in real time with advanced graphics. Our ultimate goal in this project is not only to help students learn science, but also to help them learn to think like research scientists. By looking at scientific knowledge as a set of useful models - models that are essentially temporary and will inevitably lead to better ones - they can see that science is not a set of facts, but a method for discovering patterns and predictability in an otherwise disordered and unpredictable world. Through mastery of the simulation software, students will gain the self-confidence to embark on their own missions of discovery.
The Shared Signing Science Planning Project will develop a prototype of a web-based Signing Science Pictionary. The prototype will be piloted to families and caretakers of deaf and hard of hearing children to study the feasibility and effectiveness of the learning technology and identify the activities that are most effective in helping deaf children learn life science at informal science centers. The project team will also compile a dictionary of science terms with the intention of including the terms in a full version of the Pictionary. The final Pictionary will be comprehensive; including scientific terms from life, physical, Earth, and space science and will be presented in animated sign language accompanied by written explanations and pictorial illustrations. The project will also produce a video guide with a description of activities that parents can implement with their children. The planning project will result in a prototype with 100 life science terms of species found at the three informal science centers the children and parents will visit to test the prototype. These informal sites are hands-on and exploratory featuring marine organisms and a range of terrestrial flora and fauna to touch and interact with. To prepare for the site visits, parents and caretakers of deaf or hard of hearing children will be taught how to use the Pictionary with children through a Flash-based movie that introduces the interactive features and assists the parents in engaging with their children in three activities using the signing scientific vocabulary. The preparatory vocabulary work with the parents and children will lay the educational foundation for the visits to the informal science education sites. Families will test the initial project prototypes with deaf children using a control group for comparison. Pre-tests will be used to assess childrens' vocabulary before use of the Pictionary. Follow up tests will test knowledge of the new words and will include field observations of children in museums, zoos, and farms, where the new terms will come to life in corresponding exhibits. The results of the ongoing evaluation will be compiled into a guide for other developers of similar materials for the deaf community, and will impact the development of the final project. The project will broaden participation of an underserved audience in STEM learning and generate new knowledge about how to effectively integrate emerging learning technologies into exhibits and programs for deaf learners.The project team includes TERC and Vcom3D and collaborators from Gallaudet University Regional Center at Northern Essex Community College, the College of the Holy Cross, and the Learning Center for Deaf Children. Participating informal science education institutions are represented by the EcoTarium, Davis' Farmland, and the Stone Zoo. These partnerships provide the necessary expertise and support for the proposed project to have significant impact on advancing STEM learning in informal settings for children with hearing disabilities through the use of assistive learning technologies.
Earth Game is a five-day simulation, modeled on the war games the military have staged for a hundred years. An international group of scientists, diplomats and political experts will react to a simulated environmental crisis caused by global climate change. The period of play is 1995 to 2010. The proceedings will be videotaped and edited into four hours of television programming for international broadcast to a general audience in the spring of 1992. Earth Game is a project of WQED with the Smithsonian Institution, the British Broadcasting Corporation, Adrian Malone Productions, and the U.S. Naval War College. The objectives are: 1.) to stimulate greater public and governmental interest in the subject of climate change; 2.) to foster greater understanding of what we do and don't know about the causes of climate change, and 3.) to develop a greater appreciation of the dilemmas posed by the need for political action in the fact of the threats and uncertainties surrounding climate change. Senior Smithsonian scientists, Naval War College game design experts, the distinguished television producer Adrian Malone, and a small group of advisers are planning the event, which is scheduled to take place in Newport, Rhode Island in November 1991 at the historic facilities of the Naval War College.
Digital image processing offers several possible new approaches to the teaching of a variety of mathematical concepts at the middle-school and high-school levels. There is reason to believe that this approach will be successful in reaching some "at-risk" students that other approaches miss. Since digital images can be made to reflect almost any aspect of the real world, some students may have an easier time taking an interest in them than they might with artificial figures or images resulting from other graphics- oriented approaches. Using computer-based tools such as image processing operators, curve-fitting operators, shape analysis operators, and graphical synthesis, students may explore a world of mathematical concepts starting from the psychologically "safe" territory of their own physical and cultural environments. There is reason to hope that this approach will be particularly successful with students from diverse backgrounds, girls and members of minority groups, because the imagery used in experiments can easily be tailored to individual tastes. The work of the project consists of creating detailed designs of the learning modules, implementing them on microcomputers, and evaluating their effectiveness in a variety of ways, using trials with students at Rainier Beach High School, which is an urban public high school having an ethnically diverse student body and a Macintosh computer laboratory.
DATE:
-
TEAM MEMBERS:
Steven TanimotoMichele LeBrasseurJames King