The purpose of this Communicating Research to Public Audiences project is to develop a suite of media products to raise awareness about global-warming-induced sea level rise and how scientists study it. The project will focus on Dr. Maureen Raymo's NSF funded research which looks to the Pliocene era thought to be the most recent time in geologic history with a concentration of CO2 in the atmosphere with levels as high as today. The multimedia materials including video footage, photographic images, and audio recordings will be widely distributed on the internet, on kiosks in science centers, and through podcasts. Collaborations with numerous organizations will ensure widespread dissemination of the multimedia materials. Some of the collaborators include Climate Central, a new nonprofit science and media organization; Encyclopedia of Earth, a peer-review, open access electronic reference about the Earth; and Audubon magazine among others. The project will also disseminate its resources through organizations and websites that reach teachers and students in classrooms. Rockman Et Al will evaluate the project impacts conducting both formative and summative evaluations. Focus groups and online surveys will be conducted at various stages providing feedback to the project team as well as a summative evaluation of audience impacts.
Investigators from the MIT Media Lab will develop and study a new generation of the Scratch programming platform, designed to help young people learn to think creatively, reason systematically, and work collaboratively -- essential skills for success in the 21st century. With Scratch, young people (ages 8 and up) can program their own interactive stories, games, animations, and simulations, then share their creations with others online. Young people around the world have already shared more than 1 million projects on the Scratch community website (http://scratch.mit.edu). The new generation, called Scratch 2.0, will be fully integrated into the Internet, so that young people can more seamlessly share and collaborate on projects, access online data, and program interactions with social media. The research is divided into two strands: (1) Technological infrastructure for creative collaboration. With Scratch 2.0, people will be able to design and program new types of web-based interactions and services. For example, they will be able to program interactions with social-media websites (such as Facebook), create visualizations with online data, and program their own collaborative applications. (2) Design experiments for creative collaboration. As the team develops Scratch 2.0, they will run online experiments to study how their design decisions influence the ways in which people collaborate on creative projects, as well as their attitudes towards collaboration. This work builds on a previous NSF grant (ITR-0325828) that supported the development of Scratch. Since its public launch in 2007, Scratch has become a vibrant online community, in which young people program and share interactive stories, games, animations, and simulations - and, in the process, learn important computational concepts and strategies for designing, problem solving, and collaborating. Each day, members of the Scratch community upload nearly 1500 new Scratch projects to the website - on average, a new project almost every minute. In developing Scratch 2.0, the team will focus on two questions from the NSF Program Solicitation: (1) Will the research lead to the development of new technologies to support human creativity? (2) Will the research lead to innovative educational approaches in computer science, science, or engineering that reward creativity? Intellectual Merit: The intellectual merit of the project is based on its study of how new technologies can foster creativity and collaboration. The investigators will conduct design experiments to examine how new features of Scratch 2.0 engage young people in new forms of creative expression, collaboration, learning, and metadesign. Young people are already interacting with many cloud-based services (such as YouTube and Facebook). But Scratch 2.0 is fundamentally different in that it aims to engage people in programming their own projects and activities in the cloud. With Scratch 2.0, young people won?t just interact with the cloud, they will create in the cloud. The goal is to democratize the development of cloud-based activities, so that everyone can become an active contributor to the cloud, not just a consumer of cloud-based services. This development and study of Scratch 2.0 will lead to new insights into strategies for engaging young people in activities that cultivate collaboration and creativity. Broader Impacts: The broader impact of the project is based on its ability to broaden participation in programming and computer science. The current version of Scratch has already helped attract a broader diversity of students to computer science compared to other programming platforms. The investigators expect that the collaboration and social-media features of Scratch 2.0 will resonate with the interests of today's youth and further broaden participation. Integration of Scratch into the introductory computer science course at Harvard led to a sharp reduction in the number of students dropping the course, and an increase in the retention of female students. There have been similar results in pre-college courses. The National Center for Women & Information Technology (NCWIT) calls Scratch a ?promising practice? for increasing gender diversity in IT.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskJohn Maloney
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
The Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents is a Track 2 project using spherical display systems to educate the public about the global significance of vents in the world's oceans and in the dynamic processes of Earth as a whole. The project is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, members of the Magic Planet Community and Science On a Sphere® (SOS) Network, respectively. The proximity of the two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS. The new content for spherical display systems will address key principles of Earth Science Literacy and Ocean Literacy. Imagery and data from research cruises are being used to: show how hydrothermal vents link dynamic processes in the lithosphere, hydrosphere, and biosphere; promote stewardship of life in remote environments; and excite viewers about the deep ocean frontier including exploration, research, and resources. The Global Viewport project is geared towards informal science education but also includes a component for teacher professional development from schools in towns with populations underrepresented in STEM fields. An online portal for content on Google Earth enables virtual exploration of deep-sea vents from home, extending the learning experience beyond a single visit to an informal science education institution. The online content, including interactive learning modules and games, is being promoted to marine educators and scientists at national conferences and through the COSEE social network.
The Global Viewport project was an integrative collaboration between the Woods Hole Oceanographic Institution (WHOI) and. the New Bedford Oceanarium Corporation dba Ocean Explorium at New Bedford Seaport (hereafter, Ocean Explorium). The main thematic area that was addressed is Improving Public Earth System Science Literacy. A main objective of the Global Viewport project was to address Goal 1 of the GEO Education and Diversity Strategic Plan (2010-2015): “Advancing public literacy in Earth System Science.” For this evaluation the public interacted with spherical display content in an informal
DATE:
TEAM MEMBERS:
Woods Hole Oceanographic Institution (WHOI)Meredith Emery
Rockman et al (REA), a San Francisco-based research and evaluation firm, conducted the external evaluation for Youth Radio's DO IT! program, which was funded by the National Science Foundation. Building upon Youth Radio's previous Science and Technology Program, the DO IT! initiative consisted of three primary components that promoted STEM (science, technology, engineering, and mathematics) learning by training underserved youth in cutting-edge digital technologies: (1) Brains and Beakers: Young people hosted a line-up of investigators and inventors for demo-dialogues at Youth Radio's studios
DATE:
TEAM MEMBERS:
Rockman et al | Youth RadioKristin BassJulia Hazer
In 2010 EarthSky Communications Inc. was awarded a broad implementation grant from the National Science Foundation (NSF) entitled Proyecto de Implementacion Amplia EarthSky en Español (EarthSky in Spanish Broad Implementation Project). In partnership with the Spanish media company Univision Communications Inc. and a national Advisory Committee of Hispanic scientists, educators, and media experts, EarthSky proposed to present science information and scientist interviews to Spanish-preferring U.S. Hispanics via short video programs distributed on television and the Internet. Under the Broad
DATE:
TEAM MEMBERS:
Knight Williams Inc.Valerie Knight-WilliamsDeborah ByrdRachel TeelDivan WilliamsRoxana HernandezEric AndersonGabriel SimmonsSauleh Rahbari
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
This report includes six separate formative evaluations conducted to inform the design and development of the deliverables for the 3D Visualization Tools for Enhancing Awareness, Understanding and Stewardship of Freshwater Ecosystems project. Deliverables were tested with both students and general visitor groups, with a focus on groups including late elementary and middle school children. Many different components were tested, including prototype versions of 3D visualizations, high-tech interactive experiences, apps on tablets and phones, and table top exhibits. Results are reported in each of
The National Science Foundation (NSF) awarded an Informal Science Education (ISE) grant, since renamed Advancing Informal STEM Learning (AISL) to a group of institutions led by two of the University of California, Davis’s centers: the Tahoe Environmental Research Center (TERC) and the W.M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES). The purpose of the evaluation was to gather feedback from museum professionals and the general public about the proposed 3D visualization project and its related components. Additionally, the study aimed to assess the current understanding
DATE:
TEAM MEMBERS:
University of California, DavisSteven Yalowitz
This Science Learning+ Planning Project will develop a prototype assessment tool (based on a mobile technology platform) to map STEM learning experiences across different learning ecologies (e.g. science centers, mass media, home environment) and to develop research questions and designs for a Phase 2 Science Learning+ proposal. The tool will focus on the impact of the learning ecologies on knowledge, interest, identity and reasoning rather than emphasize learning in a specific content area. The proposing team will develop and conduct a small scale usability study during the planning period, which will inform what is proposed in the Phase 2 research. A key focus of the planning period will be to identify and develop the theoretical constructs (i.e., outcomes) to be measured by the prototype App. As a starting point, the project will start with four of the six strands identified in Learning Science in Informal Environments (National Research Council, Bell et al., 2009): (1) interest triggered by a STEM experience; (2) understanding scientific knowledge; (3) engaging in scientific reasoning; and (4) identifying with the scientific enterprise. Discussion among the project partners during the planning process will revolve around how these strands should be measured in the Phase 2 research across ecologies. The measurement tool will assess the goal(s) that people set as they engage in STEM learning within each ecology and will measure the individuals' duration and level of engagement. The project will strive to utilize measures that: (1) are nonobtrusive; (2) are embedded in STEM experiences; (3) can be used across ecologies; (4) can be scaled for other ecologies than the ones examined in Phase 2 research; and (5) will be easy to use by researchers and practitioners.
DATE:
-
TEAM MEMBERS:
Bradley MorrisJohn DunloskyGreat Lakes Science CenterUniversity of LimerickIdeaStream (UK)Irish Independent newspaper
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE:
-
TEAM MEMBERS:
James DiamondNew York City Hive Learning NetworkMOUSEDigitalMeKatherine McMillan