Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Ruff Family Science is an exploratory project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. More specifically, the project is undertaking a research and design process to create prototype
DATE:
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource project Media and Technology
This workshop is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will conduct a two-day workshop that will gather citizen science project leaders to address barriers in citizen science research and infrastructure: The inability to holistically study the movement, engagement, persistence and learning outcomes among volunteers engaged in multiple projects. The past few years have been a time of tremendous growth in awareness of and interest in citizen science projects. The project will address an increasing gap preventing projects in three now-popular categories (apps, projects hosted on government websites, and event-based projects) from adopting the digital tools created and available through SciStarter.com. The workshop will bring citizen science project leaders together to deepen an understanding of their needs regarding the adoption of digital tools, developed by Scistarter, which will result in more comprehensive data in support of research in informal science learning outcomes of volunteers engaged in citizen science across projects and platforms. The in-person and online contributions from participants will guide the development of resources and tutorials to scale adoption.

SciStarter is a repository of hundreds of citizen science projects. Through previous NSF support, SciStarter developed digital affiliate tools which project leaders use on their own websites to enable analytics (statistics gathered from user activity online) to help projects more easily recruit and coordinator volunteers, help volunteers track their contributions across projects and platforms, and help researchers holistically study the movement and learning outcomes across projects and platforms. The proposed workshop will facilitate iteration and adoption of the tools among three classes of projects, not originally accounted for, which have dramatically increased in numbers during the past year: 1) app-based projects, 2) projects hosted on government websites, and 3) event-based projects.. By co-designing and implementing iterative versions of the tools among these projects, the project will address important gaps in research, enable a richer, more comprehensive understanding of volunteer engagement patterns, and discover opportunities to build a stronger community of citizen science practitioners who collaborate to enhance volunteer learning communities. The project will culminate in improved research in this field and improved management of citizen science projects for appropriate recruitment and retention that fosters STEM learning.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
This project develops and examines place-based learning using mobile augmented reality experiences for rural families where museums and science centers are scarce yet where natural resources are rich with outdoor trails, parks, and forestlands. The collaborative research team, with members from rural libraries, outdoor learning centers, learning scientists at Penn State University, and rural communities in Pennsylvania, will develop augmented reality and mobile learning resources for families and children aged from 4 to 12. The goal is to help people see what is not visible in real-time in order to learn about life and earth sciences based on local watersheds, trees, and seasonal cycles that are familiar and relevant to rural communities. To accomplish this goal, the project team will create scientifically meaningful experiences for rural families and children in their out-of-school time through three iterations of research and design. Although there is evidence that augmented reality can support learning, little empirical research has been conducted to determine what makes one type of augmented learning experience more effective than others in outdoor learning spaces. This project will produce research findings on the utility of augmented reality for science learning with families and youths outdoors. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants

Through a four-year design-based research study, researchers will investigate three research questions. (1) How can outdoor learning experiences be enhanced with augmented reality and digital resources in ways that make science more visible and interesting?; (2) How do different forms of augmentations on trails and in gardens support science learning? 3) What social roles do children and parents play in supporting each other's science learning and connections to rural communities? Data collection includes video-recordings of children and families in the outdoors, learning analytics of people's behavior, and interviews with rural families. The project's research design will allow for the development of theory, which supports rural families learning science within and about their communities. At the end of the project, the team will offer generalizable design principles for technologically-enhanced informal learning for outdoor displays, gardens, and trails.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Heather Toomey Zimmerman Susan Land
resource project Media and Technology
This project tackles the urgent needs of the nation to engage people of all ages in computational thinking and help them learn basic computer science concepts with a unique and innovative approach of structured in-game computer program coding. Researchers will explore the design and development of a 3D puzzle-based game, called May's Journey, in which players solve an environmental maze by using the game's pseudo code to manipulate game objects. The game is designed to teach introductory but foundational concepts of computer programming including abstraction, modularity, reusability, and debugging by focusing players on logic and concepts while asking them to type simple instructions in a simplified programming language designed for novices. The game design in this project differs from today's block-based programming learning approaches that are often too far from actual computer code, and also differs from professional programming languages which are too complex for novices. The game and its embedded programming language learning are designed to be responsive to the progress of the learner throughout the game, transitioning from pseudo code to the embedded programming language itself. Error messages for debugging are also designed to be adaptive to players' behavior in the game. Using extensive log data collected from people playing the game, researchers can study how people learn computer programming. Such knowledge can advance understanding of the learning processes in computer programming education. Additionally, this work emphasizes the use of games as informal learning environments as they are accessible and fun, drawing attention and retention of many learners of different age groups with the potential to change attitudes towards computer programming across different populations. This project is co-funded by the STEM + Computing (STEM+C) program that supports research and development to understand the integration of computing and computational thinking in STEM learning, and the Advancing Informal STEM Learning (AISL) program that funds innovative research, approaches and resources for use in a variety of settings with its overall strategy to enhance learning in informal environments.

The project's formative and summative evaluation methods, including surveys, expert reviews of learners' computer code developed in the game, and interviews, are used to gauge learners' engagement as well as learning. In exploring learning, researchers aim to understand how players build implicit computer science knowledge through gameplay and how that gameplay relates to their performance on external transfer tasks. The project will answer the following three research questions: (1) Can observers reliably detect and label patterns of gameplay that provide evidence of learning or misconceptions regarding the four computer science constructs - abstraction, modularity, debugging and semantics - that learners exhibit playing May's Journey? (2) How does learner's implicit knowledge of these computer science constructs change over time and do those patterns vary by gender and prior programming experiences? (3) Is there a strong correlation between implicit learning measures and transfer of CS concepts: modularity, debugging, semantics, and abstraction? How do these correlations vary across elements of the game? This work will result in several outcomes: game design metaphors tested for their learning and engagement value that can be abstracted and embedded in different games. This project will also contribute patterns and an understanding of how people learn and engage in problem solving using concepts of abstraction, modularity, debugging and semantics. These outcomes will lead to advancement in knowledge in the learning sciences as well as the design of educational games that enrich STEM learning, particularly in programming and computational thinking. In addition, this project will engage female participants and underserved populations through partnering organizations including National Girls Collaborative project.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Magy Seif El-Nasr
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.

The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tricia Zucker
resource project Media and Technology
Explore the Science of Spring: A Live Media Event is an Innovations in Development project produced by the signature PBS series Nature. The new primetime series Spring LIVE (working title) will break the frame of a traditional documentary, letting viewers themselves explore the dramatic seasonal changes of spring through the immediacy of live television. On-camera hosts, scientists and naturalists in locations across the U.S., and scores of citizen scientists will use observation and scientific inquiry to explore the workings of nature during this season of rebirth. The unfolding stories of seasonal change will illuminate larger scientific insights--into the biodiversity of species in habitats, the interconnectedness of plants and animals in diverse ecosystems, the global phenomenon of species migration, and how spring "green-up" can be affected by environmental change--while inspiring appreciation for species conservation and habitat preservation. Spring LIVE is conceived as an ongoing series, with this inaugural season composed of three one-hour programs broadcast live on three consecutive nights, along with real-time interactions via Facebook. Reaching long-standing Nature viewers (2.5 million per episode), Spring LIVE will seek to turn mature adults and diverse families into citizen science doers, and leverage younger Nature online audiences through social media and community engagement in partnership with citizen science projects.

Spring LIVE will build public knowledge of and engagement in phenology and citizen science. The project will also conduct knowledge-building research on the effectiveness of Facebook as a science learning tool. It will experiment with eliciting audience participation via Facebook within the live shows to generate synchronous, second-screen thought and discussion. An exploratory study by Multimedia Research will look at the impact of this feature, addressing the question: To what extent and how does Facebook interactivity within live science shows impact adult engagement, learning and motivation? Spring LIVE will also engage multiple partners to expand reach and impact and build capacity in their fields. National partners include the National Park Service and Next Avenue; citizen science partners include Celebrate Urban Birds, National Phenology Network, Monarch Blitz, and SciStarter, among others. PBS stations will work with these organizations to involve diverse, intergenerational audiences in observation of nature and seasonal change. Project evaluation, implemented by Knight Williams Research Communications, will focus on the impact of live television on science learning, and the success of the integration of citizen science projects on air, online, and in communities. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Fred Kaufman
resource project Media and Technology
Gathering evidence for the long-term impact of programs for youth on their involvement in STEM studies and careers continues to be a challenge, especially for program interventions happening in earlier stages of development (e.g., elementary, middle, high-school years. Work that focuses on mechanisms for mitigating these challenges is important. The conference and associated activities aim to build a research action agenda that is rooted in practice to support better understanding of the long-term impacts of informal STEM programs for girls provided by cultural institutions, along with methods and approaches for measuring them. The project team will use a collaborative co-design approach to establish a STEM for Girls Research Alliance. The Alliance will include three levels of participants, with different levels of commitment: a core planning group (CPG) of 8-10 people, approximately 20-25 participating members (PM) and 50-60 interested stakeholder group representatives (SGR). The project team will utilize face-to-face meetings, digital engagement strategies, and surveys to develop the agenda and solicit multiple rounds of feedback and input. The CPG, consisting of leaders and representatives from state-based STEM for Girls organizations that are part of the National Girls Collaborative Project (NGCP) and members of the New York State STEAM for Girls Collaborative, will be responsible for setting priorities and guiding the action agenda. The PM will include representatives (educators and researchers) from informal STEM programs at cultural institutions that participate in the state-based collaboratives. The PM will be regularly consulted on important aspects of the action agenda that relate to their work. Finally, the SGR will include representatives from several audiences that are being served by or work with the participating members: girls and young women, parents, educators, funders, researchers and employers. The SG will be engaged via focus groups virtually or at national meetings to which these individuals attend.

To support broader involvement of professionals working in this sector, a comprehensive digital engagement plan using web and social media networks will be developed. The plan will utilize a consistent hashtag, #STEMeffect, allowing participants to follow the conversation across social media platforms. Social media platforms to be utilized will include Twitter, Instagram, Facebook, LinkedIn, Google+, Snapchat and others. More than 60,000 people will be engaged via the networks of the NY STEAM Collaborative, NGCP, WSKG Public Media and project partners. A robust research action plan will position researchers to further explore the role of informal STEM education experiences in shaping the career choices of girls and identify where there are breaks in the hoped-for pathways to STEM college and careers. It also will benefit informal STEM organizations by yielding information that will help them to fine-tune their programs for girls and young women. Ultimately, contributions to the knowledge base will result in broadened participation of girls and women in STEM programs and careers. This work is funded by the Advancing Informal STEM Learning (AISL) program as part of its strategy to enhance learning in informal environments and support innovative research, approaches, and resources for use in a variety of settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Lynda Kennedy Alicia Santiago Babette Moeller
resource evaluation Media and Technology
The Anthropologist is a film by Ironbound Films, Inc. that focuses on the impact of climate change on indigenous cultures around the world, through the lens of anthropologist Susie Crate and her daughter Katie. The goals of the film are to (1) Increase viewers’ knowledge of how climate change affects communities and cultures and help viewers understand how scientists are responding to these changes; (2) Inform viewers’ attitudes towards climate change and how it will affect communities around the world; (3) Motivate viewers to become actively involved in assisting people adversely affected by
DATE:
TEAM MEMBERS: Seth Kramer
resource project Media and Technology
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Design Squad Maker project, a collaboration of WGBH Public Television (WGBH) and the New York Hall of Science (NySci), will research and develop engineering design projects that provide evidence for how to integrate informal learning spaces with digital public media assets. The project will be designed to provide accessible, motivating pathways for children aged 8-11 in pursuing and completing ambitious, fully realized engineering design projects. The project will build on WGBH's existing Design Squad model for using media to engage kids in informal engineering activities and NySCI's expertise in facilitating children's unique design processes in museum settings. By developing and studying new strategies for supporting children's use of the design process, Design Squad Maker will address critical issues in engineering education and informal learning that remain relatively unexplored. Project research will contribute to the emerging literature on "connected learning" by building new knowledge about how children's design activities can be sustained and supported over time and across multiple contexts, such as science museums and homes. Drawing on existing research in the learning sciences and engineering education, the project seeks to advance knowledge about the role of museums, maker spaces, and digital technology in sustaining children's learning in engineering. The project will use a design-based research approach, a research and development process whereby educational designers collaborate with learning scientists. Museum practitioners will collaborate with research staff and media developers to design, test, and improve digital resources, facilitation strategies, and parent engagement strategies to support children through an entire design process. The research and development process will result in digital resources and approaches in a flexible toolkit, which will be used when assessing the project's scale-up potential at 10 museum/maker spaces. The project will conduct a summative evaluation, assessing the project's intended impacts with children, parents, and staff at museums/maker spaces across the country. The toolkit will be nationally disseminated through national partners that include the Association of Science-Technology Centers, Maker Education, the National Association for Family, School, and Community Engagement, and engineering education organizations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mary Haggerty Marisa Wolsky Sonja Latimore David Wells Susan Letourneau
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. In this Innovations and Development project, Child Trends, in collaboration with Ivanhoe Broadcast News, will expand the reach of the Child Trends News Service, and rigorously evaluate its impact on viewers. The News Service aims to build the public's knowledge of, and appreciation for, social science research and to encourage adoption of research-informed parenting practices associated with positive child development--particularly among Latino parents. First produced in 2017 through a NSF proof of concept grant, the Child Trends News Service covers actionable, child-focused, social science research. By featuring this research on local TV news, the project expands access to evidence-based parenting recommendations. As of February 2018, 89 stations had subscribed to the News Service, including eight stations in the top 25 Latino-serving TV markets that reach 38% of all Hispanic TV Households in those 25 markets. This project is a response to the challenges faced by U.S. children, of whom more than one in five live in poverty. The focus on Latino parents is in response Latinos' increasing share of all children, and that Latino children are disproportionately poor, in comparison to their peers. The project will examine the impact of the News Service on parents who view the news reports in their homes, as well as Latino parents viewing the News Service as part of their participation in the Abriendo Puertas (Opening Doors) community-based parenting program. This research will contribute to the knowledge base of what we know about how people access and use science, technology, engineering and math (STEM) information across settings.

The overarching aim of this project is to leverage commercial television news to reach populations who have historically been underrepresented in STEM education and careers. The goals of the project are to:

1. Build and manage an interdisciplinary collaborative, including news media professionals, researchers, practitioners in organizations serving at-risk families, and experts in STEM communications and Latino studies.

2. Leverage mass media news outlets to deliver social science research on children to at-risk populations, with a focus on reaching Latino parents.

3. Advance the field of informal STEM learning by exploring how the public interacts with actionable research on child development to inform their knowledge, attitudes and behaviors.

4. Expand the reach and application of the news products through strategic outreach to other stakeholders in the child development field including programs serving under-served families.

To accomplish these goals, the project will further strengthen an Advisory Panel to inform content development, study design, interpretation of findings, dissemination of study results, and the transition of the project after the NSF grant period. The project will continue to provide eight (both in English and Spanish) stories each month to TV stations and strategically grow the reach in top Latino markets. The editorial process will be informed by surveys of Latino parents to identify topics of interest. Through a random-assignment impact study with local TV news audiences from diverse racial/ethnic groups, the project will evaluate the impact of the News Service. The project will use formative research methods to refine messaging and examine the potential for repurposing the videos through a parenting program for Latino parents.

The Child Trends News Service seeks broader impacts in three areas: increasing the public's scientific literacy and engagement with science and technology; increasing partnerships between academia, industry, and others; and improving the well-being of individuals in society.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alicia Torres
resource research Media and Technology
There are many reasons to be curious about the way people learn, and the past several decades have seen an explosion of research that has important implications for individual learning, schooling, workforce training, and policy. In 2000, How People Learn: Brain, Mind, Experience, and School: Expanded Edition was published and its influence has been wide and deep. The report summarized insights on the nature of learning in school-aged children; described principles for the design of effective learning environments; and provided examples of how that could be implemented in the classroom.
DATE:
TEAM MEMBERS: National Academies of Sciences, Engineering, and Medicine
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The team of Associated Universities Inc. (AUI), Michigan State University (MSU), California Academy of Science (the Academy), Astronomical Society of the Pacific (ASP), and Association of Universities for Research in Astronomy (AURA), will bring together experts in astronomy, STEM education, and planetarium show production. This work will tell the story of the people and places that make "big astronomy" possible, particularly the search for exoplanets and understanding of how planets form. The show and related materials will be presented in dozens of venues around the USA and internationally. Through a planetarium show and learning experiences that extend beyond the theater, the team will take visitors to extreme sites of the NSF ground-based observatories on the mountains of Chile and meet the diverse people who enable amazing discoveries in astronomy. In addition, the project develops the Dome+ model, which ensures engagement does not end with the planetarium. Dome+ will include additional content, weekly virtual sessions with STEM professionals, and a suite of closely linked outreach activities. Dome+ will serve as a model to extend engagement and increase the impact of future planetarium shows. Project goals include 1) increasing awareness of the research in astronomy being made at the NSF-funded observatories in Chile, 2) increasing awareness and interest in diverse STEM career opportunities at large observatories and related institutions in the USA, 3) increasing knowledge of science enabled by big observatories, 4) increasing Latinx perceptions as someone who can have a career at a major observatory, and 5) developing the Dome+ model and identify best practices for implementation. Iterative and summative evaluation of the project by collaborators at MSU will address four main questions: How does the Dome+ model affect visitors' perceptions of diversity of careers in STEM? How does the Dome+ model affect visitors' interest and understanding of Chile as an ideal observing location for astronomy? How does the Dome+ model support visitors' interest and understanding of the science of exoplanets? How do planetariums implement Dome+, and how does implementation affect the outcomes for visitors? The impact assessment component of this project takes places in four phases. The goals of the first phase are to leverage the expertise of the research team to inform the creation of the planetarium show and to set up a robust research agenda to be achieved in Years 2-4 of the project. The goals of the second phase are to collect preliminary data from visitors on their responses to planetarium show content and to use this information to advise on edits to the show and to develop the content and format of the web-portal and educational materials. The goal of the third phase is to then collect data on how effectively the technology-rich environments of the three components of the Dome+ model (planetarium show, web-portal, educational materials) work in concert to reach the intended goals of changing visitors' perceptions of diversity in STEM, engaging visitors with astronomy content on exoplanets, and exposing visitors to the wonders of astronomy research in Chile. The goal of the fourth phase is to perform data analysis, synthesize findings and make recommendations for future implementations of the Dome+ model for practitioners. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Timothy Spuck Vivian White Ryan Wyatt Shannon Schmoll National Radio Astronomy Observatory