In Spring 2006, the Missouri Botanical Garden received a National Science Foundation grant to fund the LIONS program. LIONS trained educators from the St. Louis region, through professional development about place-based education, to deliver after school and summer programming to students grades 5 through 8. Since its inception, the LIONS program has included evaluation of program implementation and outcomes. There were dramatic changes in the scope of the program, which expanded beyond the originally targeted University City school district by adding additional schools recruited by LIONS
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
WaterBotics is the underwater robotics curriculum and program that is being disseminated to four regions through a National Science Foundation grant, in collaboration with national and state partners. Its goal is to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. The curriculum, which can be used either in traditional classroom settings or in after-school and summer-camp situations, is problem-based, requiring teams of students to work together to design, build, test, and redesign underwater robots, or “bots” made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges.
DATE:
-
TEAM MEMBERS:
Stevens Institute of TechnologyMercedes McKayPatricia Holahan
Backyard Mystery is an NSF-funded curriculum, focused on diseases, pathogens and careers, using interactive paper and physical activities. Content is for middle school participants in afterschool settings, like 4-H and other similar venues. The curriculum engages student interest in genetics and genomics and in the bioSTEM workforce. The curriculum storyline is placed in a familiar setting to students--the backyard--and explores fungi, bacteria, viruses and parasites in a way that is engaging fun and informative. It can be tailored to specific audiences, e.g. participants interested in animal science will gain from focusing on the parasite panel. The curriculum is available in two forms: a combined lesson that brings all of the elements together in one session and another in which the content is broken out into three separate lessons. We would like to share this curriculum with facilitators and educators for both out-of-school time and classroom settings. It is available electronically and free to use. We only ask for users to complete a brief survey to give us feedback, which is helpful for NSF.
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE:
-
TEAM MEMBERS:
Tirupalavanam GaneshMonica ElserStephen KrauseDale BakerSharon Robinson-Kurplus
The Oregon Museum of Science and Industry (OMSI), in partnership with the Native American Youth Association (NAYA), Intel Oregon, the National Park Service, and National Oceanic and Atmospheric Administration, will the expand the existing Salmon Camp Research Team (SCRT), a youth-based ITEST project targeting Native American and Alaskan Native youth in middle and high school. SCRT uses natural resource management as a theme to integrate science and technology and provide students with opportunities to explore local ecosystems, access traditional American Indian/Native Alaskan knowledge, and work closely with researchers and natural resource professionals. The project is designed to spark and sustain the interest of youth in STEM and IT careers, provide opportunities to use IT to solve real world problems, and promote an understanding of the complementary nature of western and native science. The original SCRT project included summer residential programs, spring field experiences, weekend enrichment sessions, parental involvement, college preparatory support, and internship placement. The renewal will increase the IT content for participants by adding an afterschool component, provide opportunities for greater parental involvement, enhance the project website, and develop a SCRT toolkit. Students are exposed to a variety of technologies and software including Trimble GeoExplorer XM GPS units, PDAs with Bluetooth GPS antennae, YSI Multi-Probe Water Quality Field Meters, GPS Pathfinder, ArcMap, ArcPad, Terrasync, and FishXing. It is anticipated that this project will serve 500 students in Oregon, Washington, California, Idaho, Montana, and Alaska, proving them with over 132 contact hours.
DATE:
-
TEAM MEMBERS:
Travis Southworth-NeumeyerSteven TritzDaniel CalvertNicole Croft
This proposal, the "Dan River Information Technology Academy (DRITA)," is a request for a three-year program for high school students from underserved populations who are interested in pursuing IT or STEM careers. The overall goal of DRITA is to provide opportunities for promising African American or Hispanic youth to (1) develop solid Information Technology skills and (2) acquire the background and encouragement needed to enable them to pursue higher education in STEM fields, including IT itself and other fields in which advanced IT knowledge is needed. A total of 96 students will be recruited over the course of the three years. Each DRITA participant will receive 500 hours of project-based content. The project includes both school-year modules and a major summer component. Delivery components will include a basic IT skills orientation; content courses in areas such as animation, virtual environment modeling, advanced networking, programming, GIS, robotics, and gaming design; externships; a professional conference/trade show "simulation," and college/career counseling. Parent involvement is an integral part of the program and includes opportunities for parents to learn from participants, joint college visits, and information sessions and individual assistance in the college admission process.
DATE:
-
TEAM MEMBERS:
Julie BrownElizabeth NilsenMaurice Ferrell
The Salmon Camp Research Team (SCRT) project was created to address the under-representation of Native Americans in information technology (IT) and IT-intensive professions in science, technology, engineering, and mathematics (STEM). The Oregon Museum of Science and Industry (OMSI) partnered with the Native American Youth and Family Association (NAYA) under renewed National Science Foundation funding to strengthen community involvement and work directly with students year round. The 2007-2008 evaluation of the project found evidence of effective implementation and data on important student
DATE:
TEAM MEMBERS:
Phyllis AultOregon Museum of Science and Industry
The Salmon Camp Research Team (SCRT) project was created to address the under-representation of Native Americans in information technology (IT) and IT-intensive professions in science, technology, engineering, and mathematics (STEM). The Oregon Museum of Science and Industry (OMSI) is partnering with the Native American Youth and Family Association (NAYA) under the renewed National Science Foundation (NSF) funding to strengthen community involvement and work directly with students year round. An SCRT program website is under development with program information and a social networking page
DATE:
TEAM MEMBERS:
Phyllis AultOregon Museum of Science and Industry
In 2006, the Institute for Advanced Learning and Research (IALR) received a three-year grant from the National Science Foundation's Information/Innovative Technology Experiences for Students and Teachers (ITEST) division to create the Dan River Information Technology Academy (DRITA) for under-served high school students in rural Virginia. The only program of its kind in Southern Virginia, the program was designed to provide participating students with competencies in information technology (IT) and workforce skills. In addition, the program seeks to encourage students to graduate from high
DATE:
TEAM MEMBERS:
Irene GoodmanLorraine DeanMiriam KochmanHelena PylvainenColleen ManningKaren PetermanInstitute of Advanced Learning and Research
FETCH with Ruff Ruffman, produced by WGBH, is a daily half-hour PBS television series with accompanying Web and outreach activities targeted to 6- to 10-year olds. The program brings science learning to young children by uniquely blending live-action with animation, game show convention with reality programming, and humor with academics. The intended impacts of this new season are to 1) help the target audience, especially girls and minorities, develop an interest, knowledge and skills necessary to do science; 2) help kids develop the math skills and knowledge necessary to solve science and engineering problems; and 3) bring FETCH's unique brand of informal science learning to camps across the country. The requested funds will allow the project to expand the science curriculum with 20 new half-hour episodes and expand the Web site, focusing on three new science themes that highlight topics of interest to this age group: "Animal Universe," "Science of Art," and "Adventure Science." The Web site will include four new science-based Web games that will allow kids to create and post content of their own design and interact with other FETCH fans online. In addition, funds will support new educational resources for camps, including a Camp FETCH Guide. The project will continue to work with the project's established collaborators like the Boys and Girls Clubs, Girl Scouts of America, and YMCA, as well expand the outreach via new partnerships with the Center for Summer Learning at Johns Hopkins University and the American Camp Association. Christine Andrews Paulsen & Associates (CAPA) will conduct summative evaluation of both the television show and the Camp FETCH Guide.
Community Science Workshops: Beginning a National Movement is an extension of a successful, NSF-funded project that created a network of community science centers in California. The San Francisco State University will now take this successful venture to a national level by working with the American Association for the Advancement of Science (AAAS) and Quality Education for Minorities (QEM) to establish a new Community Science Workshop (CSW) 8-10 in underserved communities over the next four years. Once sites are selected, CSW directors participate in an intensive two-week training program. This is followed by visits by site mentors, and ongoing support through the WWW and other media, which contributes to the establishment and eventual sustainability of the centers. Each site partners with larger, established museums and science centers locally to gain much needed assistance with exhibits and education programs. Community Science Workshops contain permanent exhibit space, a workshop area for student projects and classroom/storage space. They serve a variety of audiences through after school, family, school and summer science programs. Potential locations include Arizona, Florida, Louisiana, Michigan, Montana, Nebraska, New York, Tennessee, Texas, Washington and the District of Columbia.