Astronomy has been an inherently visual area of science for millenia, yet a majority of its significant discoveries take place in wavelengths beyond human vision. There are many people, including those with low or no vision, who cannot participate fully in such discoveries if visual media is the primary communication mechanism. Numerous efforts have worked to address equity of accessibility to such knowledge sharing, such as through the creation of three-dimensional (3D) printed data sets. This paper describes progress made through technological and programmatic developments in tactile 3D
Learning to See, Seeing to Learn is a National Science Foundation-funded project to develop www.macroinvertebrates.org, a digital observation tool and set of informational resources that can supplement volunteer biomonitoring trainings and improve aquatic macroinvertebrates identification. Project researchers are interested in how trainers and volunteers use the tool, as well as how training that incorporates the tool impacts volunteers’ confidence in and accuracy around aquatic macroinvertebrates identification. In November 2018, project partner, Stroud Water Research Center, conducted a
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The public must be made aware in a clear, responsible way about the role of science to help bring this pandemic under control and prevent future outbreaks. This project will allow the NewsHour to go beyond their daily reporting of the medical information about the pandemic, to inform the public about the difference scientific research/ research conducted by scientists and medical professionals can make in attacking such a dire threat. The PBS NewsHour has the capability to quickly mobilize its science journalists and national distribution infrastructure to produce at least six broadcast segments and additional digital materials reporting on this on-going scientific work. They will interview scientists, researchers and experts in genomic analysis, computer tracking, vaccine production, and social epidemiology showing what they are doing to test, treat, track and stop the spread of COVID-19, to create vaccines that may prevent further transmission, and to measure the social impact of the disease. These segments will be broadcast nationwide on local PBS stations and distributed on their website, YouTube, and social media channels. Viewership of the NewsHour is extensive reaching 2.5 million people nightly via broadcast and almost 33 million YouTube views per quarter. During a recent quarter, they reached 72.6 million on Facebook and garnered 86.8 million Twitter impressions.
The research team, Knology, will conduct a study to assess 1) where US adults are primarily getting information about COVID-19; 2) their perception of personal and public responsibility; 3) behaviors they have taken and/or plan to take, and when; 4) their social values. Knology will develop a survey instrument with adopted items and modules used in prior collaborations to develop a baseline understanding of the relationship between news consumption and attitudes about COVID-19 risk. The survey will be hosted using Qualtrics. Survey data will be gathered from a representative sample of US adults (N = 1000) recruited using the online software system, Prolific. A recent PBS NewsHour/NPR/Marist poll will be used as a baseline. Once potentially identifying information like demographics are aggregated, these formative data and topline results will be shared openly through the Knology website to support other researchers and journalists.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Genetic Modification (GM) has been a topic of public debates during the 1990s and 2000s. In this paper we explore the relative importance of two hypothesized explanations for these controversies: (i) people's general attitude toward science and technology and (ii) their trust in governance, in GM actors, and in GM regulations, in explaining the Dutch public's Attitude toward GM applications, and in addition to that, the public's GM Information seeking behaviour. This will be conducted through the application of representative survey methodology. The results indicate that Attitudes toward GM
DATE:
TEAM MEMBERS:
Lucien HanssenAnne DijkstraSusanne SleenhoffLynn FrewerJan Gutterling
Despite low public knowledge of synthetic biology, it is the focus of prominent government and academic ethics debates. We examine the “NY Times” media coverage of synthetic biology. Our results suggest that the story about synthetic biology remains ambiguous. We found this in four areas — 1) on the question of whether the field raises ethical concerns, 2) on its relationship to genetic engineering, 3) on whether or not it threatens ‘nature’, and 4) on the temporality of these concerns. We suggest that this ambiguity creates conditions in which there becomes no reason for the public at large
YR Media (formerly Youth Radio) engages young people in digital media production that combines journalism, design, data, and coding. With support from the National Science Foundation (NSF), YR Media collaborated with the Massachusetts Institute of Technology’s App Inventor to launch WAVES — A STEM-Powered Youth News Network for the Nation. This three-year initiative expanded YR Media’s model of informal STEM education through the launch of a national platform that utilizes STEM-powered tools to create and distribute news stories, mobile apps, and digital interactives.
Rockman et al, an
This project aims to broaden participation in STEM education among underserved populations through innovative and inclusive approaches to technology education. The project is designed to enhance knowledge and comfort with technology and develop computational thinking among women who were formerly incarcerated and are now seeking to reenter the workforce or adjust to their lives outside the criminal justice system ("women in transition") in the Midwest. While women have become the fastest growing segment of the incarcerated population, prison education and reentry programs are not well prepared to respond to this influx. Women in transition are rarely exposed to STEM education and they are generally isolated from the digital world while in prison. Consequently, they face post-incarceration challenges in accessing and using rapidly changing digital technologies. Against this backdrop, this three-year technology education project will aim to help women in transition in Kansas and Missouri develop STEM skills relevant to job applications and post-incarceration adjustments. The project may serve as a template for building evidence-based workforce preparation efforts in informal settings, and the concurrent online peer networking and app development may also facilitate adaptation for and scaling to other regions and other similarly digitally disadvantaged populations. This project is funded by the AISL program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The project design is informed by the research team's past experiences offering technology education to women in transition and other underserved populations in the Midwest. The design includes three interrelated aspects: (1) technology education, (2) web/mobile app development, and (3) original empirical research. The research team will offer hybrid (online and offline) technology training programs to 300 women in transition in Kansas and Missouri. Learners will attend weekly face-to-face technology classes at different levels (introductory, intermediate, and advanced) at public libraries. A member-only online site and an accompanying mobile application for online tutorials and virtual meet-ups will enhance exposure to different types of technologies. Starting with interest-based technology topics including online resume building, information verification, and identity protection, the team will introduce women to deeper STEM topics including elementary coding skills and computational thinking. Empirical research will examine how different modalities of offering technology education are associated with learning outcomes for women participating in the program and the association of increasing knowledge and skills in digital technologies with self-efficacy, perceived social support, employment, and reduced recidivism.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Hyunjin SeoHannah BrittonMegha RamaswamyBaek-Young ChoiSejun Song
“Reclaiming Digital Futures” is a free guide and associated website for youth organizations to use as they integrate digital learning into their programming and practices. The report is available at DigitalLearningPractices.org.
The report and the associated DigitalLearningPractices.org site contain a cross-section of resources to aid organizations and educators in developing quality programming that integrate technology and youth development. Rather than focusing on efforts to help youth become fluent and skilled in uses of technology simply for the sake of meeting predetermined standards
AHA! Island is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking concepts and practices. This research is intended to examine the extent to which the prototyped media and activity sets support the project’s learning goals. Education Development Center (EDC), WGBH’s research partner for the project, conducted a small formative study with 16 English-speaking families (children and their caregivers) to test out these media and activity set prototypes. During the in-person video
Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show
The STEM + Digital Literacies (STEM+L) project investigates science fiction composing as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in socio-scientific issues related to environment.
The participating students (G5-8) work in small groups to design and produce STEM content rich, multimedia science fictions during the summer (1 week) and the academic year (4-6 2.5hr sessions). Culminating activities include student presentations at a local science fiction film festival.
The research component employs an iterative, design-based
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by developing a suite of digital tools designed to support positive messaging around skill-based education and careers and to improve mentors' communication with middle school-aged youth mentees. Maintaining U.S. economic advantage requires attracting talent to high-growth, high-demand skill-based, STEM-related careers that are traditionally attained through Career and Technical Education (CTE). Replacing old negative perceptions with new, more accurate messages about CTE and then reaching youth with these messages before high school is essential. Career-focused mentoring is a vehicle for delivering these messages and supporting youth exploration of CTE as a possible path for their own lives. Investigators will explore the hypothesis that through strong connections between those best positioned to articulate industry needs (mentors) and those most receptive to filling that need (mentees), this project will improve youth awareness and interest in CTE and the rewarding careers that are available to them. Research and development activities will be carried out collaboratively in informal learning environments in Boston and New York City that serve middle school-aged youth from underrepresented communities, through career-focused mentoring programs. The project team, led by media producers of the WGBH Education Foundation, includes market researchers and communications strategists at Global Strategy Group, learning scientists at Education Development Center, and mentorship program partners at SkillsUSA, Learning for Life's Middle School Explorer Clubs, and Boy Scouts of America's Scoutreach. If promising, the career-focused mentoring programs of SkillsUSA, Learning for Life, and Boy Scouts of America will incorporate the messaging roadmap and digital tools to support their mentoring curricula, which impact greater than one million youth in each year.
In the first phase of research, investigators will study perceptions of STEM-focused CTE from a nationwide sample of 800 middle school-aged youth and 30 mentors from skill-based STEM industries. In the second phase, investigators will work with six program leaders and 30 mentors from SkillsUSA, Explorer Clubs, Scoutreach, and other mentoring programs to document the needs of mentors for support as they enter into the mentoring process. The third phase will engage mentorship program leaders and 36 mentors in the iterative development of a suite of digital tools that would support positive messaging around skill-based education and careers and that would improve mentors' communication with youth mentees. In addition, a pre-post mentorship program pilot study will explore the promise of the digital tools for effectively supporting mentor-mentee communications that improve youth awareness and interest in STEM-focused CTE and skill-based, STEM-related careers. Thirty six mentors and 288 of their youth mentees will participate in the pilot study. Data sources for research include interviews and surveys of program leaders, mentors, and mentees, as well as tracking mentor activity within the online digital tool environment. This research would advance knowledge of how mentors influence disadvantaged youth perceptions of and interest in CTE and skill-based, STEM career pathways, in which there is currently little evidence as to how mentor preparation shapes ability to positively impact youth outcomes. Major outcomes will include a) deeper understandings of youth and mentor perceptions of CTE and mentors' needs for supporting their work with mentees, b) a messaging roadmap and digital tools that prepare mentors for their work with middle school youth, and c) empirical findings regarding the potential of the digital tools for effectively supporting mentor-mentee communications that improve youth's awareness and interest in CTE and skill-based, STEM-related careers. Outcomes will be shared widely to research, education, and industry communities, locally and nationally, through social media, partner networks, conference presentations, and research publications. An advisory board will provide independent review on the project activities.