Skip to main content

Community Repository Search Results

resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource project Public Programs
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE: -
TEAM MEMBERS: Tirupalavanam Ganesh Monica Elser Stephen Krause Dale Baker Sharon Robinson-Kurplus
resource evaluation Public Programs
The goal of the SISCOM program is to improve science achievement of economically disadvantaged middle school students in science, through the development, implementation, and dissemination of a replicable, model program for use with underserved youth, especially girls, in informal educational settings. A number of programs and interventions geared toward bolstering the STEM interest and achievement of urban youth have been implemented across the country. Key elements that have proven to be successful have been incorporated into the SISCOM program include the longevity of intervention
DATE:
TEAM MEMBERS: Penny L. Hammrich, Ph.D. Kathy Fadigan, Ed.D. Judy Stull, Ph.D.
resource project Public Programs
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.
DATE: -
TEAM MEMBERS: Sandra Parker Scott Raymond
resource project Public Programs
Investigating Green Energy Technologies in the City (GET City) is a youth-based project designed to target underserved middle school students and introduce concepts in energy sustainability and environmental health. Partners include Michigan State University's College of Education and College of Engineering, Lansing Boys and Girls Club, Lansing Board of Water and Light, and Urban Options, a non-profit energy and environmental agency. Participants learn to use IT tools (GIS software, databases, and communication tools) and gain IT workforce skills, research experiences, science knowledge, and inquiry skills. Project components include bi-weekly afterschool sessions (18 weeks), a 3-week summer program with field-based design experiences, community energy events, parental involvement activities, career field trips, and a project website. Youth will also participate in an annual community fair and conduct energy audits. Topics covered include brownouts, environmental health, alternative energy sources, and green energy technologies. Youth will receive ongoing support from energy mentors and gain leadership experience. The project will result in the development of a curriculum that includes IT-based investigations with a focus on core energy concepts. GET City also includes a research component that examines youth identity development in science, engineering, and IT in an attempt to understand how the program supports participation in an IT community of practice. The research, in conjunction with the comprehensive evaluation, will contribute to the field by providing insight into how the program design fosters youth engagement and learning in science, engineering, and IT. Seventy youth will receive 280 contact hours over two years of participation.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton