Skip to main content

Community Repository Search Results

resource research Public Programs
Poster for 2014 AISL PI Meeting. The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth.
DATE:
TEAM MEMBERS: State University of New York Kristian Breton
resource project Media and Technology
The National Science Teachers Association (NSTA), the Association of Science-Technology Centers (ASTC) and their research/evaluation partner, David Heil and Associates (DHA), will conduct front-end research to develop, pilot, and evaluate (formatively and summatively) a peer-reviewed journal and associated multi-media resources designed to catalyze innovative advances and learning across formal and informal science, technology, engineering, and mathematics (STEM) education communities. The goal is to identify content that is useful and appeals to the intersection of three target audiences: informal educators, formal educators and researchers conducting research at the intersection of in-school and out-of-school learning. This informal science education (ISE) "journal" would be a multi-media resource, available in both print and electronic forms, that could include videos or digital interactives and provide the potential for audience/reader feedback mechanisms, including input via social media. The publication proposed in this project has the potential to satisfy in part a key need identified in a Wellcome Trust study, Analysing the UK Science Education Community: The contribution of informal providers. The study report identifies the need to build an international depository of what has been and is being learned in ISE experiences at the boundary of in-school and out-of-school STEM learning - including syntheses of research, program evaluations, policy reports and illustrative cases studies. The proposed journal will also provide a vehicle to encourage and develop incentives for practitioners to publish results of their work. The project will use surveys, phone interviews and focus groups to conduct: 1) a landscape assessment, identifying what resources are already available to target audiences, how they are used, and what is missing; 2) front-end research with target audiences prior to publication of pilot issues, assessing interests, needs, and expectations and testing early topics, delivery formats, and discussion vehicles; and (3) formative and summative evaluation, assessing how well the (two-issue) pilot and associated social media vehicles foster synergy and satisfy the needs of the identified target audiences.
DATE: -
TEAM MEMBERS: National Science Teachers Association Kelly Riedinger David Evans Margaret Glass
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Public Programs
WaterBotics is the underwater robotics curriculum and program that is being disseminated to four regions through a National Science Foundation grant, in collaboration with national and state partners. Its goal is to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. The curriculum, which can be used either in traditional classroom settings or in after-school and summer-camp situations, is problem-based, requiring teams of students to work together to design, build, test, and redesign underwater robots, or “bots” made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges.
DATE: -
TEAM MEMBERS: Stevens Institute of Technology Mercedes McKay Patricia Holahan
resource evaluation Exhibitions
This is the Summative Evaluation of the traveling exhibition Human +. It was done by Joe Heimlich and his team at OSU.
DATE:
TEAM MEMBERS: New York Hall of Science Eric Siegel Joe E Heimlich
resource research Public Programs
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS: The Coalition for Science After School Leah Reisman
resource project Media and Technology
Discovering and understanding the temporal evolution of events hidden in text corpora is a complex yet critical task for knowledge discovery. Although mining event dynamics has been an important research topic leading to many successful algorithms, researchers, research and development managers, intelligence analysts and the general public are still in dire need of effective tools to explore the evolutionary trends and patterns. This exploratory project focuses on developing and validating a novel idea called narrative animation. Narrative animation uses animated visualizations to narrate, explore, and share event dynamics conveyed in temporally evolving text collections. Film art techniques are employed to leverage the animated visualizations in information organization and change detection, with the goals of enhancing analytical power and user engagement. A prototype system called CityStories is being developed to generate narrative animations of events in cities derived from web-based text. If this novel, risky research is successful, it is expected to yield fundamental results in narrative animation that can advance the current paradigm in information visualization and visual analytics by developing novel techniques in using animations for presenting and analyzing dynamic abstract data at a large scale. The pilot system CityStories system is expected provide a novel network platform for education, entertainment, and data analytics. It will engage general users such as students, teachers, journalists, bloggers, and many others in web information visualization and study. Results of this research will be disseminated through publications, the World Wide Web, and collaborations with researchers and analysts. The project web site (http://coitweb.uncc.edu/~jyang13/narrativeanimation/narrativeanimation.htm) will include research outcomes, publications, developed software, videos, and datasets for wide dissemination to public.
DATE: -
TEAM MEMBERS: Ye Zhao
resource project Media and Technology
This planning grant addresses the issue of students losing interest in STEM during the ages of 8-12 years. The PIs propose that STEM content provided through electronic media will be more readily accepted by youth because it is on their "home turf." IMX.org will be a new, highly engaging, online destination for tweens and kids at large. It is designed to leverage the Web 2.0 and tweens' fascination with media and popular culture, and to demonstrate the connections between the real world, everyday life, and STEM. The project will test a preliminary design with a focus group of 8-12 year-olds, convene a panel of experts and Advisory Board, and create a beta Web site to conduct formative research.
DATE: -
TEAM MEMBERS: Jenny Lam
resource project Exhibitions
This Communicating Research to Public Audiences (CRPA) project is for promoting public understanding of and engagement with STEM by developing and implementing technology and formats for interactive exhibitions at the interface of underwater robotics and marine science. This program envisions the use of BRUCE (Bioinspired Robotic Underwater Carangiform Exhibit) featuring a shoal of ROSAs (Remotely Operated Swimming Avatars) at the River Project to engage the local New York City community and echo to the broader U.S. non-technical audience in marine science and technology. More specifically, this program is expected to put kids and adults behind the wheel of miniature robotic fish that can swim alone, school in groups, and compete against each other under the remote control of the audience. To further attract youngsters to the exhibit, an application for an iDevice, that is, an iPhone, iPad, or iPod Touch, for controlling the robotic fish while seeing through its eyes will be developed. This is a cooperative venture between New York University Polytechnic School of Engineering, New York University Steinhardt School of Culture, Education, and Human Development, and the River Project.
DATE: -
TEAM MEMBERS: New York University Polytechnic School of Engineering Maurizio Porfiri Paul Phamduy
resource project Public Programs
The project will conduct a mapping study to describe the contexts, characteristics and practices of a national sample of science-focused Out-of-School Time (OST) programs. The study targets OST programs for middle- and high-school-aged youth, including after-school programs, camps, workshops, internships, and other models. While millions of dollars are invested in these programs, and tens of thousands of students participate , as a community, we have no truly comprehensive view of the wide variety of formats, audiences, and approaches that are represented by the many active programs. Where, when, and by whom are these science-rich programs conducted? What types of experiences do they offer to what kinds of students, with what goals? What organizational and experiential factors affect the outcomes for these youth? Ultimately, we wish to understand how these differences in program design are related to youth outcomes such as STEM learning, attitudes and interest, and their later career and educational choices. To answer these questions, we are gathering data through documents, interviews, and the online MOST-Science Questionnaire.
DATE: -
TEAM MEMBERS: University of Colorado Boulder Sandra Laursen Robert Tai Xitao Fan
resource project Public Programs
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
DATE:
TEAM MEMBERS: Northwestern University Maggie Waldron Reed Stevens Kemi Jona
resource project Public Programs
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE: -
TEAM MEMBERS: Southwestern College David Brown David Hecht