As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Informal STEM learning opportunities are often rare in rural locations where the early childhood education system is also under-resourced. Through partnerships with educational researchers, early math educators, pediatric health experts, and pediatric clinics, this project will develop and study a new opportunity for informal math learning. The project will work with pediatric clinics that serve rural immigrant families who are racially, culturally, and linguistically diverse. The project leverages the high levels of trust many caregivers have in their child’s pediatrician to improve math learning during critical early years. This project will build on a previous program where physician text messages to caregivers supported youth literacy development. In this instance the project will support caregivers’ math interactions with their 3- and 4-year-olds to cultivate children's math knowledge and skills. The text messaging program will be grounded in research in child development, mathematics learning, parenting practices, and adult behavior change. Texts will also provide caregiver supports for how to engage their children in mathematical activates in their everyday lives and provide information about the important skills children are developing. Text messages will be co-developed with caregiver input, and focus on content underlying mathematical development such as Number Sense, Classification and Patterning, Measurement, Geometry, and Reasoning. Caregivers will receive text messages from their pediatric clinics three times a week for eight months. For example, three related texts supporting Number Sense include: “FACT: Kids enjoy counting and it prepares them for K! Mealtimes are a fun time to practice counting objects;” “TIP: At a meal, say: Can you count all the cups on the table? All the plates? What else can you count? (Forks) Tell them: Great job!” and “GROWTH: You are helping kids to count & get ready for K. At the park, ask: How many bikes are there? How many birds? Count together & find out!” Throughout the planning and implementation phases of the project the team will work closely with early education math experts, key advisors, and caregivers to ensure the text messaging program is tailored to meet the cultural, linguistic, and contextual needs of rural caregivers and children.
The project will research impacts of the text messaging program on children, caregivers, and clinical staff. First, the project will investigate the impact of the texting program on children through a randomized trial, and pre-and-post measures of early childhood math skills and abilities. Second, using interviews at baseline and in a 9-month follow-up, the project will study the texting program’s impact on caregivers’ perceptions regarding the importance of math learning for young children. Third, the project will explore the impact of the text messaging program on health professionals’ understanding of math learning in early childhood by collecting qualitative data and assessing attitudes about the clinic’s role in supporting early math. Caregivers and clinic staff will also participate in focus groups to better understand impacts for each of these groups. The project will reach 1000 families, who will be randomly assigned to treatment or control groups through block-randomization, stratified by caregiver language and child’s age. This parent-informed project will build evidence toward new approaches to promoting early math in the pediatric clinic, an informal environment that can reach all families and can leverage innovative technology. Findings will be shared widely though a communication and engagement plan that includes children, caregivers, physicians and clinic staff, informal STEM educators, researchers, and policy makers.
DATE:
-
TEAM MEMBERS:
Lisa ChamberlainSusanna LoebJaime Peterson
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.
Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Aaron WilsonSergey GrigorianXiaohui WangMayra Ortiz
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
WNET, working with Education Development Center, will lead a small scale Innovations in Development effort to develop, research, and evaluate a new model to engage underserved families in STEM learning. The new endeavor, Cyberchase: Mobile Adventures in STEM, will build on the proven impact of the public media mathematics series Cyberchase and the growing potential of mobile technology and texting to reach underserved parents. WNET will produce two new Cyberchase episodes for 6-9 year olds, focused on using math to learn about the environment. Drawing on these videos and an existing Cyberchase game, the team will produce a bilingual family engagement campaign that will combine an in-person workshop followed by a 6-8 week "text to parent" campaign, in which parents receive weekly text messages suggesting family STEM activities related to the media content. The engagement model will be piloted in three cities with large low-income/Latino populations, along with one texting campaign offered without the workshop. This project will build knowledge about how to deploy well-designed public media assets and text messaging to promote fun, effective STEM learning interactions in low-income families. While past research on educational STEM media has tended to focus on children, especially preschool age, this project will focus primarily on text messaging for parents, and on learners age 6-9, and the wider scope of parent/child STEM interactions possible at that age.
The primary goal of the project will be to develop, test and refine a family engagement model that includes a face-to-face workshop, rich narrative Cyberchase content, and text-message prompts for parents to engage in short, playful STEM activities with children. The project team will explore which features of the mobile text-and-media program have most value for low-income and Latino families and prompt STEM learning interactions, including a comparison of workshop-based and text-only variants. The project will have three phases: needs assessment and preliminary design; an early-stage test in New York and development and testing of media; and three late-stage tests in contrasting locations, two including workshops and one "text-only," and analysis of findings. Ultimately, the project will share knowledge with the field about the opportunities and challenges of using mobile texting and public media to reach underserved families effectively. This knowledge will also inform a future proposal for production and outcomes research, which, based on the study results, may include a scaled-up version in ten locations and a ten-city Randomized Control Test. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
There is a gap between the discipline of economics and the public it is supposedly about and for. This gap is reminiscent of the divide that led to movements for the public understanding of and public engagement with the natural sciences. It is a gap in knowledge, trust, and opinions, but most of all it is a gap in engagement. In this paper we ask: What do we need to think about — and what do we need to do — in order to bring economics and its public into closer dialogue? At stake is engaged, critical democracy. We turn to the fields of public understanding of science and science studies for
The Exploratorium explainer program is not only important to the young people involved, but is an integral part of the museum culture. This initiative that started to help the youth of our community has blossomed into a program that has been very helpful to the science centre. In fact, the institution would not be complete without the fresh energy of the explainers. They help the Exploratorium to continue to give the real pear to its public.
Dialogical models in science communication produce effective and satisfactory experiences, also when hard sciences (like astrophysics or cosmology) are concerned. But those efforts to reach the public can be of modest impact since the public is no longer (or not sufficiently) interested in science. The reason of this lack of interest is not that science is an alien topic, but that contemporary science and technology have ceased to offer a convincing model for the human progress.
Popularising mathematics requires a preliminary reflection on language and terms, the choice of which results from underlying dynamics. The aim of this article is to start an overall analysis of the conditions influencing this linguistic choice.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project develops and researches the integration of Peg + Cat (an animated, math-based PBS television series for preschoolers), accompanying digital media, and early childhood educator professional development (PD). PD is designed to enhance educators’ abilities to support preschoolers’ social-emotional learning in the context of math activities, and in turn, their interest and engagement in math. The project also includes recommendations for engaging
Moving Beyond Earth Programming: “STEM in 30” Webcasts. The Smithsonian’s National Air and Space Museum (NASM) will develop nine “STEM in 30” webcasts which will be made available to teachers and students in grades 5-8 classrooms across the country. The primary goal of this program is to increase interest and engagement in STEM for students. Formative and summative evaluations will assess the outcomes for the program, which include the following:
Increased interest in STEM and STEM careers, Increased understanding of science, technology, engineering and mathematics (STEM), Increased awareness and importance of current and future human space exploration, and Increased learning in the content areas.
This series of live 30-minute webcasts from the National Air and Space Museum and partner sites focus on STEM subjects that integrate all four areas. The webcasts will feature NASA and NASM curators, scientists, and educators exploring STEM subjects using museum and NASA collections, galleries, and activities. During the 30-minute broadcasts, students will engage with museum experts through experiments and activities, ask the experts questions, and answer interactive poll questions. After the live broadcasts, NASM will also archive the webcasts in an interactive “STEM in 30” Gallery.
When it comes to STEM education, the nation’s K–12 public schools cannot do it all. The nature of 21st century proficiency in science, technology, engineering, and mathematics is too complex for any single institution. The good news is that schools do not have to do it alone. Museums, zoos, nature centers, aquariums, and planetariums are among the several thousand informal science institutions in the United States that regularly engage young people in observing, learning, and using STEM knowledge and skills. Providing a richness of resources unavailable in any classroom, informal science
DATE:
TEAM MEMBERS:
Community for Advancing Discovery Research in Education (CADRE)