Skip to main content

Community Repository Search Results

resource research Media and Technology
The work described in this white paper was undertaken in direct response to information WNET received from science museums describing certain challenges they face when partnering with public television stations on outreach initiatives. The PBS Series THE HUMAN SPARK provided the perfect opportunity to explore better ways to collaborate on large-scale initiatives, and to learn how these collaborations might provide the framework for attracting new audiences, increasing membership and revenue, and developing long-lasting partnerships.
DATE:
TEAM MEMBERS: Robin Cannito
resource research Public Programs
This report presents the findings of a qualitative study that asked 38 secondary science teachers, ‘How can natural history museums effectively support science teaching and learning?’ A partnership of four natural history museums across England, teachers from their local areas and a university education department were involved. The museums work in partnership to support school science at 11–18. In-depth focus groups held at the museums and questionnaires were used.
DATE:
TEAM MEMBERS: Sally Collins Andy Lee
resource project Public Programs
The Decapoda - shrimp, lobsters, and crabs - are an economically important, diverse group of animals whose geologic history extends back 400 million years. Living representatives, numbering over 15,000 species, are global in distribution and nearly ubiquitous in oceanic and non-oceanic environments. They exert a major impact on ecosystems; understanding the dynamics of their fossil record will illuminate their historical impact on ecosystems. We will test the hypothesis that decapods are arrayed in a series of discrete evolutionary faunas; remarkably, the vast array of living and fossil decapods in diverse interrelated groups have exploited four basic body plans repeatedly. Other hypotheses to be tested are that the Decapoda have repeatedly adopted a limited number of baupläne, or generalized architectures, throughout their history; that they have experienced explosive evolutionary radiations followed by periods of no determinable change; and that they are generally resistant to mass extinction events. These hypotheses will be tested using a unique dataset compiled and assessed by the Principle Investigators: a compilation of all fossil decapod species, arrayed in a classification scheme including fossil and living taxa, with geologic and geographic ranges of all species, including a phylogeny (i.e. "family tree") for many sub-groups within the Decapoda. The dataset will be expanded to include ecological data for each taxon and will be entered into the Paleobiology Database, an NSF-supported vehicle for analyzing the fossil record. Employing its methodology, patterns of diversity and macroevolution of the decapods will be generated at levels ranging from the entire Order to species level. This will result in a comprehensive analysis of macroevolutionary patterns of this major group for the first time. Available paleoecological data derived from field studies and published records will be used to determine the effects of various environmental factors such as seafloor conditions, reef development, water depth, and temperature on morphology, extinction survivorship, and diversity. Because decapods have a remarkable range of morphological variation preservable in the fossil record, the diversity of the groups of decapods can be assessed in relation to their morphological characteristics. Defining the history of taxa with specialized morphology will permit recognition of body plans that have been exploited by different decapod groups throughout the history of the clade.

Intellectual merit. This study will provide the most comprehensive analysis of macroevolution of the Decapoda yet conducted, all based upon a unique dataset that is internally consistent by virtue of its having been developed entirely by the investigators. It will document the significance of employing a high resolution, species-level database for interpretation of diversity. The hypotheses and conclusions derived here will provide a model and the foundation for future work on Decapoda, Arthropoda, and macroevolution of well-constrained groups. It will provide a test for the efficacy of PBDB data versus a constrained dataset assessed by specialist systematists.

Broader impacts. The work will introduce undergraduate students at Kent State at Stark, an undergraduate campus, and Kent State at Kent, to research that involves paleoecological, paleogeographical, and functional morphological elements which, in turn, will be communicated to other students. Because decapods are known to virtually everyone, they form an excellent group to use to inform the public about ancient patterns of diversity and the relationship between the morphology of organisms, variations in their environmental requirements, and their adaptability to different physical conditions. This will be conveyed in a professionally constructed display which has the potential to be exhibited in museums and universities around the country. Small kits designed for use in elementary and middle schools will be available to allow students to make their own observations about the adaptations of decapods to their environment and its effect on diversity. Published papers and presentations on results of research at meetings will be prepared throughout the course of the research. Because the study of modern biodiversity is a concern of the general public, presentations to broader audiences as well as geology classes will provide a broad historical context for understanding modern patterns of diversity. Data entered into Paleobiology Database and Ohio Data Resource Commons will be openly available to other researchers and the general public. Combined, the databases will assure archival storage and public access, following a proprietary period.
DATE: -
TEAM MEMBERS: Carrie Schweitzer Rodney Feldmann
resource research Media and Technology
The media are the most pervasive disseminators of informal science education in this country. Watching commercial and non-commercial television will provide you with information on alligators or zygotes, bio-fuels or stem cells, polar bears or hurricanes. Radio, too, provides discussions of genetics and global warming and birds and stars. Often radio and television will cover science issues with a contextual overlay of politics or morality, so viewers and listeners can sense how they and their community relate to it. But for excitement, going to the theater to see an IMAX movie will take you
DATE:
TEAM MEMBERS: Saul Rockman Kristin Bass Jennifer Borse
resource evaluation Media and Technology
Produced by National Geographic Television and funded in part by the National Science Foundation (NSF), Alien Deep is a multi-platform media project designed to increase public literacy about: the fundamental principles and concepts underlying ocean systems and functions, the importance and challenges of oceanographic research and exploration, and the impact of the ocean on humanity and humanity’s impact on the ocean. The centerpiece of the project is a five-part mini-series that premiered on the National Geographic Channel in 2012. In addition to the five episodes, which were also made
DATE:
TEAM MEMBERS: Knight Williams Inc. Valerie Knight-Williams Divan Williams Rachel Teel Eric Anderson Gabriel Simmons
resource project Media and Technology
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
DATE: -
TEAM MEMBERS: Lisa Gugenheim
resource project Exhibitions
A team from Michigan State University, in partnership with six science, art-science, and art museum venues around the country and with the assistance of researchers at Georgia Institute of Technology, is implementing an EAGER project to conduct ongoing experiments on the chemical precursors to life as exhibit experiences for visitors to these venues. The experiments, to be run over the course of several months as the exhibit travels around the country, expand on the 1950s' work of Stanley Miller and Harold Urey, which continues to stimulate new investigations and publications, including experiments being conducted on the International Space Station. The experiments/exhibits share key features across the three different kinds of venues, allowing the team to study and compare the impacts on the various publics of engaging them in real-time science experiments. Two major goals are (1) to explore new ways to attract public interest in science by performing in public settings previously untried experiments on the chemical precursors to life, and (2) to investigate how the context of different kinds of venues and their visitor characteristics affect how visitors interpret the experience and what they learn. The team is also exploring how various data visualization representations can be designed to foster public interest and understanding. The intent is to develop an approach that has potential applications to other STEM content domains and expanding the reach to broader public audiences.
DATE: -
TEAM MEMBERS: Michigan State University Robert Root-Bernstein Adam Brown Maxine Davis
resource project Public Programs
Science Club is an after school program created in partnership between Northwestern University and the Boys & Girls Clubs of Chicago. Every week throughout the academic year, middle school youth (grades 5-8) work in small groups with their graduate student mentors on challenging, hands-on experiments. The six Science Club curricular modules cover topics ranging from biomedical engineering to food science, all with the goals of helping youth to 1) improve their understanding of the scientific method, 2) develop scientific habits of mind, and 3) increase their interest in STEM fields, particularly health-related careers. Science Club serves 60 youth every quarter with the help of 30 trained scientist mentors. Science Club meets three days a week at the Pedersen-McCormick Boys & Girls Club in Chicago, IL.
DATE: -
TEAM MEMBERS: Northwestern University Rebecca Daugherty
resource evaluation Exhibitions
This report details a nine-month summative evaluation of the Underwater Dome Exhibit at the Seattle Aquarium. The study was undertaken to inform the Aquarium's development of short- term, cost-effective updates to improve visitor satisfaction and experience in the dome. The study sought to develop a baseline understanding of how visitors use and react to the exhibit, as well as to determine whether or not visitors understand that the dome represents the Puget Sound. Data was collected using observational and survey instruments (included in the appendix of this report).
DATE:
TEAM MEMBERS: Seattle Aquarium Andrea Michelbach Hal Kramer
resource research Exhibitions
The purpose of this research study was to investigate: students' schema structure for human evolution; their idiosyncratic conceptual change after visiting a museum exhibition; the role of alternative frameworks during learning; and the function of affect in learning. Thirty eleventh and twelfth grade high school students, eleven males and nineteen females, visited an exhibition on human evolution and participated in an opened-ended pre and post interview and Likert-type questionnaire. The interviews were transcribed, segmented by using shifts in natural language, and pre and post schema
DATE:
TEAM MEMBERS: Ismael Calderon
resource project Exhibitions
This Communicating Research to Public Audiences (CRPA) project is for promoting public understanding of and engagement with STEM by developing and implementing technology and formats for interactive exhibitions at the interface of underwater robotics and marine science. This program envisions the use of BRUCE (Bioinspired Robotic Underwater Carangiform Exhibit) featuring a shoal of ROSAs (Remotely Operated Swimming Avatars) at the River Project to engage the local New York City community and echo to the broader U.S. non-technical audience in marine science and technology. More specifically, this program is expected to put kids and adults behind the wheel of miniature robotic fish that can swim alone, school in groups, and compete against each other under the remote control of the audience. To further attract youngsters to the exhibit, an application for an iDevice, that is, an iPhone, iPad, or iPod Touch, for controlling the robotic fish while seeing through its eyes will be developed. This is a cooperative venture between New York University Polytechnic School of Engineering, New York University Steinhardt School of Culture, Education, and Human Development, and the River Project.
DATE: -
TEAM MEMBERS: New York University Polytechnic School of Engineering Maurizio Porfiri Paul Phamduy
resource research Exhibitions
In the following pages I describe what happens when an exhibit dense in local meanings enters the national arena. The Yup'ik mask exhibit Agayuliyararput (Our Way of Making Prayer) began as visual repatriation—bringing objects out of museums back into a local context—and ended as a tribal exhibit displayed in three very different majority institutions, including an American Indian museum, a natural history museum, and an art museum. The mask exhibit was developed as a three-way collaboration between Yup'ik community members, an anthropologist, and museum professionals. As it traveled farther
DATE:
TEAM MEMBERS: Ann Fienup-Riordan Wiley