The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE:
-
TEAM MEMBERS:
Loren ThompsonJeremy BabendureBen Wiehe
This project entails the creation of a coordinated colony of robotic bees, RoboBees. Research topics are split between the body, brain, and colony. Each of these research areas is drawn together by the challenges of recreating various functionalities of natural bees. One such example is pollination: Bees coordinate to interact with complex natural systems by using a diversity of sensors, a hierarchy of task delegation, unique communication, and an effective flapping-wing propulsion system. Pollination and other agricultural tasks will serve as challenge thrusts throughout the life of this project. Such tasks require expertise across a broad spectrum of scientific topics. The research team includes experts in biology, computer science, electrical and mechanical engineering, and materials science, assembled to address fundamental challenges in developing RoboBees. An integral part of this program is the development of a museum exhibit, in partnership with the Museum of Science, Boston, which will explore the life of a bee and the technologies required to create RoboBees.
DATE:
-
TEAM MEMBERS:
Robert WoodRadhika NagpalJ. Gregory MorrisettGu-Yeon WeiJoseph Ayers
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
Science Club is an after school program created in partnership between Northwestern University and the Boys & Girls Clubs of Chicago. Every week throughout the academic year, middle school youth (grades 5-8) work in small groups with their graduate student mentors on challenging, hands-on experiments. The six Science Club curricular modules cover topics ranging from biomedical engineering to food science, all with the goals of helping youth to 1) improve their understanding of the scientific method, 2) develop scientific habits of mind, and 3) increase their interest in STEM fields, particularly health-related careers. Science Club serves 60 youth every quarter with the help of 30 trained scientist mentors. Science Club meets three days a week at the Pedersen-McCormick Boys & Girls Club in Chicago, IL.
Backyard Mystery is an NSF-funded curriculum, focused on diseases, pathogens and careers, using interactive paper and physical activities. Content is for middle school participants in afterschool settings, like 4-H and other similar venues. The curriculum engages student interest in genetics and genomics and in the bioSTEM workforce. The curriculum storyline is placed in a familiar setting to students--the backyard--and explores fungi, bacteria, viruses and parasites in a way that is engaging fun and informative. It can be tailored to specific audiences, e.g. participants interested in animal science will gain from focusing on the parasite panel. The curriculum is available in two forms: a combined lesson that brings all of the elements together in one session and another in which the content is broken out into three separate lessons. We would like to share this curriculum with facilitators and educators for both out-of-school time and classroom settings. It is available electronically and free to use. We only ask for users to complete a brief survey to give us feedback, which is helpful for NSF.
The MyDome project will bring 3D virtual worlds for group interaction into planetaria and portable domes. Advances in computing have evolved the planetarium dome experience from a star field and pointer presentation to a high-resolution movie covering the entire hemispherical screen. The project will further transform the dome theater experience into an interactive immersive adventure. MyDome will develop scenarios in which the audience can explore along three lines of inquiry: (1) the past with archeological reconstructions, (2) the present in a living forest, and (3) the future in a space station or colony on Mars. These scenarios will push the limits of technology in rendering believable environments of differing complexity and will also provide research data on human-centered computing as it applies to inquiry and group interactions while exploring virtual environments. The project proposes to engage a large portion of the population, with a special emphasis on the underserved and under-engaged but very tech-savvy teenage learner. Research questions addressed are: 1. What are the most engaging and educational environments to explore in full-dome? 2. What on-screen tools and presentation techniques will facilitate interactions? 3. What are the limitations for this experience using a single computer, single projector mirror projection system as found in the portable Discovery Dome? 4. Which audiences are best served by exploration of virtual hemispherical environments? 5. How large can the audience be and still be effective for the individual learner? What techniques can be used to provide more people with a level of control of the experience and does the group interaction enhance or diminish the engagement of different individuals? 6. What kind of engagement can be developed in producing scientific and climate awareness? Does experiencing past civilizations lead to more interest in other cultures? Does supported learning in the virtual forest lead to greater connection to and understanding of the real forest? Does the virtual model space experience excite students and citizens about space exploration or increase the understanding of the Earth's biosphere? The broader impacts of the project are (1) benefits to society from increasing public awareness and understanding of human relationships with the environment in past civilizations, today?s forests and climate change, and potential future civilizations in space and on Mars; (2) increasing the appeal of informal science museums to the tech-savvy teenage audience, and (3) significant gains in awareness of young people in school courses and careers in science and engineering. The partners represent a geographically diverse audience and underserved populations that include rural (University of New Hampshire), minority students (Houston Museum of Natural Science) and economically-distressed neighborhoods (Carnegie Museum of Natural History). Robust evaluation will inform each program as it is produced and refined, and will provide the needed data on the potential for learning in the interactive dome environment and on the optimal audience size for each different type of inquiry.
DATE:
-
TEAM MEMBERS:
Annette SchlossKerry HandronCarolyn Sumners
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
Exploring the Euteleost Tree of Life represents the education and outreach of the Euteleost Tree of Life assembling the tree of life research grant (NSF DEB Grant No. 0732819; PI: Ed Wiley) it includes a curriculum activity and a interactive fish tree. Investigating a Deep Sea Mystery, a curriculum module for high school and undergraduate students follows the research of project collaborator Dave Johnson (Smithsonian Institution) to explore deep sea fish phylogeny. The module includes an investigation of What is a fish?, fish anatomy and morphology, and how different lines of evidence (morphological and molecular) can be used to study evolutionary relationships. A fisheye view of the tree of life is a web module featuring an interactive fish tree of life highlight with a series of mini-stories Web material is still in the early stages of development, and will include a splash page with a simplified clickable fish tree through which the different.
Hidden Universe is a multi-faceted project built around production of a 2D/3D giant screen film. The goal is to inspire, engage, and excite viewers about the mysterious worlds hidden around us and the science and technology that reveal them. The film will illuminate natural wonders that are invisible to the naked eye, such as objects and processes that are too slow, too fast, and too small to be seen without advanced technologies. It will include nanoscience and microbiology research and developing wavelength technologies such as ultrafast lasers. The project will employ cutting-edge technology to bring arresting footage of micro- and nanobiology to the giant screen to offer audiences (1) deeper understanding of natural phenomena that comes through observation and (2) greater appreciation of modern technology that makes such observation possible. The film story will focus on demonstrating science as inquiry and underscore the crucial link between scientific inquiry and technological advances. The film project will be enhanced with educational outreach materials, professional development opportunities for educators, and an interactive website. Hidden Universe will be produced by the large format team at National Geographic's Cinema Ventures group and its production partner Blacklight Films. The project brings to the table the extensive resources of the National Geographic Society. In addition, the project will partner with a select group of scientific research centers (Chester Carlson Center for Imaging Science at the Rochester Institute of Technology and the Nanobiotechnology Center at Cornell) and leaders in informal education (Boston Museum of Science and Girl Scouts) to extend the reach and impact of the project. The project will add to its list of partners by working with the D.C. Public Schools and Teach for America to find new ways to intersect with teachers and students in underserved areas. The project will employ Multimedia Research and Knight-Williams Research Communications to conduct the project\'s formative and summative evaluations, respectively.
This project comprises the NSF-funded portion of the renovation of a 25,000 sq. ft. natural history gallery called "CHANGING CALIFORNIA." ORIGINAL PROJECT DESCRIPTION: The Oakland Museum of California (OMCA) will develop, implement, and evaluate Hotspot California, a research-based natural science gallery transformation that will explore the educational potential of wildlife dioramas to engage the public in urgent environmental issues. The exhibition will showcase five real places in California that exemplify high biological diversity and complex environmental issues. Innovative approaches to interpretation will emphasize personal connections to these places and infuse static dioramas with visualization technologies that illustrate environmental change over time. The project will explore how such enhancements to dioramas might help visitors develop place-based connections to the natural world. The project has four major deliverables: 1) an innovative 25,000 sq ft gallery exhibition installation featuring five specific California places where California's unique biodiversity is threatened; 2) an application and evaluation of a new participatory exhibit design model involving community contribution, collaboration, and co-design; 3) a two-day "synthesis symposium" for informal science education professionals to consider broad applications of project findings for the field; and 4) "Diorama Dilemmas: A Source book for Museums," synthesizing relevant literature, case studies, and findings from the project's research and evaluation generalizable to the field. The project has evolved since the NSF award, but it remains aligned with its original goals. The team increased the number of California places from five to seven and worked to add a strong human presence within a gallery previously devoted almost entirely to other species. Innovative reuse of OMCA's dioramas and habitat cases continues to be the project's core, but the team's approach has emphasized re-contextualizing rather than revising those exhibits. New elements include iconic artifacts and environments reflecting recent human impact on California, relevant objects from OMCA's art and history collections, digital visualizations of dynamic natural phenomena, and spaces for hands-on investigation. Community focused elements include multiple co-created exhibits and media programs offering inspiring encounters with Californians deeply involved in these seven places.
The Oregon Museum of Science and Industry (OMSI) will partner with the City of Portland's Office of Sustainable Development, Metro Regional Government, Portland Community College, Verde, and the Coalition for a Livable Future, to create a series of informal science education experiences on the theme of Sustainability. For this project, sustainability is defined in terms of a triple bottom line of economic, social, and environmental needs. The project responds to calls for broad environmental education of the public in response to environmental crises (such as climate change), and specific research suggesting that even museums that do provide information about such issues rarely help their visitors learn to make the comparisons necessary to make more sustainable choices. For the public audience, the project team will create a 1,500 sq. ft. bilingual (Spanish/English) exhibition to encourage the public to develop skills in making personal choices that affect the sustainability of their community. They will also create 25-40 bilingual cell phone tags that will provide listeners who dial the phone numbers with information, personal perspectives, current STEM research, invitations to contribute ideas or vote on issues, interactive phone-based activities, and links to websites, all in service of helping them make intentional and informed personal decisions on sustainability. The cell phone tags will be located at approximately 100 locations in the Portland area, including predominantly Hispanic neighborhoods, public transit locations, public works, and community projects. The team will also create a bilingual website and will offer quarterly bilingual events at the museum on the topic of sustainable living. For the professional audience, the team will create a set of tools and indicators for assessing the sustainability of exhibit-development processes, using the triple bottom line of financial, environmental, and social impacts. For example, a Green Exhibit Guide will provide resources and a checklist for exhibit development projects, and will propose field-wide standards analogous to the LEED (Leadership in Energy and Environmental Design) rating system for green buildings. Regional workshops will engage exhibit developers, designers, fabricators, and administrators in using the tools in their own institutions. The project will create a coordinated set of resources to inform the public about the science of sustainability and to engage them in making informed choices in their daily lives, both in the museum and beyond. The topic of sustainability is timely and important, and the use of cell phones as a mobile technology linked to web resources and an exhibition constitute an innovative synergy of media to create impacts on a city-wide scale. The project serves underrepresented Hispanic audiences through its creation of bilingual materials, placement of cell phone tags, and community involvement in the development process. Finally, the project advances the ISE field in proposing and broadly disseminating a set of standards for green exhibit design, along with developing resources and tools for assessing sustainability. Created in collaboration with other organizations, this work has the potential to reduce the environmental impact of museums while providing highly visible examples of sustainable practices for visitors.