The Ocean Science project integrates the Ocean Literacy Essential Principles and Fundamental Concepts into a Western Washington region-wide, coordinated program of formal and informal education consisting of: 1. Teacher professional development in the ocean sciences to integrate the Ocean Literacy Essential Principles and Fundamental Concepts into inquiry-based marine science education and instruction; 2. Evaluation and re-alignment of existing Sound Science ecosystems curricula into Ocean Science, incorporating NOAA data and promoting the Ocean Literacy Essential Principles and Fundamental Concepts; 3. Classroom programs, beach field investigations, and on-site programs at the Seattle Aquarium of the Olympic Coast national Marine Sanctuary's Olympic Coast Discovery Center for grades 4-5 students, their parents and teachers; 4. Parent training in ocean science content, the Ocean Literacy Essential Principles and Fundamental Concepts, and inquiry-based methods for supporting their children's science education; 5. Informal education for the general public via an interactive learning station linked to the Window on Washington Waters exhibit and designed to innovatively use NOAA data and information (videos, computer simulations and other creative media) to increase and evaluate ocean literacy in adults and children. Window on Washington Waters displays the outer coast marine environments and sea life of the Olympic Coast National Marine Sanctuary.
DATE:
-
TEAM MEMBERS:
Kathy Sider
resourceprojectProfessional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE:
-
TEAM MEMBERS:
Vivian AltmannDarlene LibreroVirginia WittMichael Funk
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
The Monarch Butterfly Larval Monitoring project is a collaborative Citizen Science Project in which informal science education (ISE) institutions participate in research to measure the distribution and abundance of monarch butterfly larvae throughout the US, addressing the lack of knowledge about the breeding phase of the annual cycle. This project seeks to create links among ISE institutions (nature centers, museums, state and national parks, and environmental learning centers) from across the US, and also between these institutions and university scientists, citizens, and K-12 educators. The
DATE:
TEAM MEMBERS:
Carol FreemanUniversity of Minnesota
resourceprojectProfessional Development, Conferences, and Networks
The University of Minnesota and the University of Florida are collaborating on the creation of a Master Naturalist Program for adults that will serve as a model for nationnwide dissemination. This program, which builds on the existing Florida Master Naturalist Program, will provide intensive 40-hour training sessions in ecology, natural/cultural history and the environment for volunteers in Minnesota. Participants will then complete 40 hours of supervised volunteer service at local natural history centers while volunteers in both Florida and Minnesota will have the option of participating in advanced training workshops. Staff members at informal science education institutions and natural history centers take part in train-the-trainer workshops to assist with dissemination. Deliverables include three training modules (Big Woods, Big Rivers; Prairies and Potholes; North Woods, Great Lakes), advanced training workshops, local Master Naturalist Chapters, annual conferences, training materials and workshops for Master Naturalist Instructors, and a project website. It is anticipated that this project will result in the implementation of 64 Master Naturalist workshops, directly reaching 1,280 volunteers, while 750 participants are anticipated for advanced training workshops. It is estimated that 130 staff will participate as Master Naturalist Instructors. Indirect impacts will be realized as volunteers contribute more than 51,000 hours in service to nature centers and informal science institutions interacting with public audiences while conducting natural history activities. Strategic impact will be realized in the outcomes of the comprehensive evaluation plan that will assess immediate and longitudinal impacts on public and professional audiences.
DATE:
-
TEAM MEMBERS:
Robert BlairMartin MainAmy RagerKaren Oberhauser
The Science Museum of Minnesota will develop "Investigations in Cell Biology," an integrated program that introduces cell, microbiology, and molecular biology to museum audiences through open-access, wet-lab, micro-experiment benches; training and support for school teachers; classes for adults and teens; and a long-term program for local high school youth. The project includes the development, testing, and installation of four micro-experiment benches that introduce visitors to the objectives, tools, and techniques of cell biology experimentation. These benches,"Inside the Cell," "Testing for DNA," "DNA Profile," and "Microbe Control," will be part of "Cell Lab," a 1,500 square-foot open experiment area within the science museum's new core exhibition, "The Human Body," opening December 1999.
DATE:
-
TEAM MEMBERS:
Laurie Kleinbaum FinkSusan FlemingJ Newlin
Two 8 to 10 week modules, one focusing on cells and the other on reproduction and heredity, serve as the basis for the development of a comprehensive, assessment-driven, middle school science curriculum called "Science for Today and Tomorrow." A curriculum frramework is developed for Life and Physical Sciences to be taught in Grades 6 and 7 and Earth Science in Grade 8. The research-based materials assist students to develop a working knowledge of a core set of ideas that are fundamental to the discipline and ultimately to see how the concepts span the disciplines. The student materials and the teachers' guides are enhanced with classroom-tested assessments and web-based content resources, simulations and tools for gathering and interpreting data. On-line professional development materials allow teachers to gain content knowledge and pedagogical skills. The website also contains an area that provides information for administrators including strategies for supporting teachers and another area for community members to involve them in the students' science learning. The project builds upon the lessons learned in previous materials development projects at TERC.
The New York Hall of Science is overseeing a complex, four-year applied research and traveling exhibit development project on "precursor concepts" to the theory of evolution. These concepts pertain to key ideas about life -- variation, inheritance, selection, and time (VIST) -- and are organized around the principle that living things change over time. The central research question is: Can informal, museum-based interventions prepare young children (5 -12) to understand the scientific basis of evolution by targeting their intuitive pre-evolutionary concepts? The work involves many collaborators -- museum personnel around the country, university researchers, exhibit designers and evaluators, web designers, the Association of Science-Technology Centers and a number of advisors in the biological sciences, psychology and in informal and formal education. The products include applied research studies that will add to the conceptual change knowledge base in cognitive psychology, a 1,000 square-foot exhibit plus discovery boxes, a section on the UC-Berkeley Understanding Evolution web site, extensive on site and online staff training opportunities for participating museums and others, several dissemination activities including two research symposia, and bilingual (English and Spanish) exhibit materials and family guides. The project is positioned as a new model in informal science education for integrating research, development and evaluation, with applicability beyond the life sciences to other STEM fields.
Understanding the Science Connected to Technology (USCT) targets information technology (IT) experiences in a comprehensive training program and professional support system for students and teachers in science, technology, engineering and mathematics (STEM). Participants have opportunities to assume leadership roles as citizen volunteers within the context of science and technology in an international watershed basin. Training includes collection, analysis, interpretation and dissemination of scientific data. BROADER IMPACTS: Building on a student volunteer monitoring program called River Watch, the USCT project enables student scientists to conduct surface water quality monitoring activities, analyze data and disseminate results to enhance local decision-making capacity. The project incorporates state and national education standards and has the potential to reach 173 school jurisdictions and 270,000 students. USCT will directly impact 81 teachers, 758 students and 18 citizen volunteers. The USCT project provides direct scientist mentor linkages for each participating school. This linkage provides a lasting process for life-long learning and an understanding of how IT and STEM subject matter is applied by resource professionals. Broader impacts include accredited coursework for teachers and students, specialized training congruent with the "No Child Left Behind Act of 2001," and building partnerships with Native American schools. INTELLECTUAL MERIT: The USCT project is designed to refocus thinking from static content inside a textbook to a process of learning that includes IT and STEM content. The USCT engages students (the next generation of decision makers) in discovery of science and technology and expands education beyond current paradigms and political jurisdictions.
DATE:
-
TEAM MEMBERS:
Charles FritzGerald VanAmburg
resourceprojectProfessional Development, Conferences, and Networks
Environmental Education Association of Oregon is launching a planning process to determine if a state-wide certification program emphasizing informal science pedagogy, STEM content and research science engagement is the best approach to supporting the professional development of environmental educators. The planning team consists of museums, zoos, forestry, park and wetland conservation groups, nature centers, small environmentally focused businesses, universities and community after school informal education centers. The planning will result in a needs assessment of professional development interests, a set of Oregon specific core stem and facilitation competencies, diversity strategies, and evaluation rubrics that will lay the groundwork for a potential core certification framework.
DATE:
-
TEAM MEMBERS:
Linda Rhoads
resourceprojectProfessional Development, Conferences, and Networks
The Bay Area Discovery Museum will expand their "My Place by the Bay" theme with new programmatic elements that "reinforce the theme that people, plants and animals live together and depend upon each other to survive." Three new activity areas will be developed that focus on science learning: A) an outdoor "Tot Lot" for early science learners; B) an outdoor "Discovery Cove" focusing on place-specific elements of their bayshore site; and C) an indoor recreated "Research Vessel" outfitted with a simulated navigaion station and marine biology laboratory. The learning goals for these three areas are: 1) "The Bay environment is home to many living things"; and 2) "I can do science to explore and learn about my world". The "Tot Lot," built into a hill, will be a one-half acre, multi-sensory, outdoor, prepared environment for children under five to learn about animals living in three distinct Bay habitats: woodland, stream and meadow. The "Discovery Cove" will be a two-acre area prepared environment for children up to age eight. Learners will be encouraged to see the bay as an integrated system that includes animal adaptations, ecological relationships and human activity. The "Research Vessel" is inspired by the R/V Questuary and is the place where visitors will use authentic tools to do science. Other features of this project include an integrated system of Parenting Messages that includes special signage for parents and a Families Ask Guide for families with children ages seven and under that is a joint effort of DABM, Golden Gate National Recreation Area and the Golden Gate National Parks Association. They will also develop a series of teacher workshops that will link this informal learning space with the needs of formal education. One specific school group with whom they will work is the Junipero Serra, an NSF Urban Systemic Intiative site.