Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE: -
TEAM MEMBERS: Stephen Madigosky William Keilbaugh Victor Donnay Bruce Grant Thomas Schrand
resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Media and Technology
Partnering with National Musical Arts, the Science Museum of Minnesota seeks to develop BioMusic, a 4,000 sq. ft. traveling exhibition that explores the origins of music in nature and the connections between music and sound of living things. This project is based on planning grant ESI-0211611 (The Music of Nature and the Nature of Music) awarded to NMA. The project is based on the emerging interdisciplinary research field of biomusic, which includes musicology plus aspects of neuroscience, biology, zoology, environmental science, physics, psychology, math and anthropology. The exhibit sections -- "Humanimal" Music; Natural Symphonies; Ancient Roots; Music, Body and Mind; and World of Music -- use both music and natural sound to explore biodiversity, cultural diversity, the physics of sound and the brain. BROADER IMPACT: The exhibition is expected to travel for at least six years, reaching some two million people in 18 communities. It is to be accompanied by a six-part radio series (Sweet Bird Classics) for young children. Because of the connection to music and many other areas of public interest, this exhibition has the potential to attract and engage new audiences to science museums and stimulate their interest in STEM.
DATE: -
TEAM MEMBERS: J Newlin Wendy Pollock patricia gray
resource project Media and Technology
The Adult Literacy Media Alliance (ALMA), producer of TV411 and the NSF-funded Think Math, will undertake a planning process for the development of a ten part series, TV411 Cook Smart, which will incorporate lessons in math, biochemical and physical processes into a cooking show format. The television series is geared towards low-literate adults and builds on ALMA's prior experience in producing science/math-based programming. The deliverables include a standards-based curriculum outline for the series; outreach and training plans with the project's broadcast partner, Kentucky Educational Television; development of strategic partnerships with community organizations, including Head Start programs and Neighborhood Networks National Consortium; and evaluation strategies to study the impact of the TV411 Cook Smart on adult learners.
DATE: -
TEAM MEMBERS: Lora Myers
resource project Media and Technology
Radio Lab will produce 20 hour-long interdisciplinary science programs and 30 shorter features to be aired on NPR news magazine programs on a wide range of core STEM topics exploring how research is done as well as what the scientific results mean to the listener. The programs are co-hosted by Robert Krulwich, science reporter for NPR, and Jared Abumrad, WNYC radio producer and music composer. The programs are using a new, unorthodox format with music, live sounds and conversations between the hosts designed to appeal to young adult listeners who previously thought they did not like science. Each episode is crafted around a scientific finding and aims to connect the scientific inquiry to philosophical and universal implications. Program topics will include biology and neuroscience as well as physics, genetics, chemistry, math and engineering. The program carriage goal is to have the hour-long programs airing on 100 stations reaching three to four million listeners by the end of the project. The shorter segments will be distributed by NPR in its regular news magazine programs. Programs will also be podcast on NPR and WNYC's web sites, as well as through iTunes. The project will also train NPR science reporters on this new approach to science news content.
DATE: -
TEAM MEMBERS: Ellen Horne Jad Abumrad Robert Krulwich Barbara Flagg