Skip to main content

Community Repository Search Results

resource research Media and Technology
The night skies and the planet on which we live can be inspirational to young and old alike. In the run up to its 200th anniversary in 2020, the U.K.'s Royal Astronomical Society has put together a £1 million scheme to fund outreach and engagement activities for groups that are less well served in terms of access to astronomy and geophysics. This article outlines the projects funded and the impact they are starting to have.
DATE:
TEAM MEMBERS: Steve Miller Sue Bowler Sheila Kanani
resource research Media and Technology
This comment focuses on an early case of an open infrastructure that emerged in the 1990s in international astronomy. It targets the reasons for this infrastructure’s tremendous success and starts with a few comments on the term ‘digital infrastructure’. Subsequently, it provides a brief description of the most important components of the infrastructure in astronomy. In a third step, the use of one component — the arXiv, an open access repository for manuscripts — is analyzed. It concludes with some considerations about the success and acceptance of this infrastructure in astronomy.
DATE:
TEAM MEMBERS: Niels Taubert
resource project Media and Technology
In the From Project Mercury to Planet Mars project, the Museum of Science is partnering with national leaders to create two resources, each geared to a different style of learner, that strengthen engineering education and immersive experiences in the nation’s informal education environment. The Museum of Science is collaborating with the Smithsonian National Air and Space Museum and Albert Einstein Planetarium in Washington D.C., the Clark Planetarium in Salt Lake City, Utah, the Adventure Science Center and Sudekum Planetarium in Nashville, Tennessee, and the Tech Museum of Innovation in San Jose, California. Through the development of a Planetarium show engaging audiences in the excitement of a human journey to Mars, and a large-scale engineering design challenge activity that allows participants to create design solutions to a Mars exploration challenge, the goal of From Project Mercury to Planet Mars is to increase student and public awareness of human space exploration and inspire the next generation of engineers and scientists. Planetarium show viewers are expected to demonstrate an increased appreciation and interest in future activities in engineering and science, and learn about the technical challenges of space exploration. Design challenge participants are expected to actively engage in the engineering design process and in engineering habits of mind.
DATE: -
TEAM MEMBERS: Annette Sawyer
resource evaluation Media and Technology
The Museum of Science, Boston led the From Project Mercury to Planet Mars: Introducing Engineering and Inspiring Youth through Humanity’s Greatest Adventure project (FPMPM) as a way to produce and share high-quality informal engineering education opportunities about the topic of human space travel to Mars. The grant involved the creation of two products that address human space travel to Mars: an immersive full-dome planetarium show and a hands-on engineering design challenge. To evaluate the grant work, the Research & Evaluation Department at the Museum of Science, Boston conducted a
DATE:
TEAM MEMBERS: Annette Sawyer Katie Todd Leigh Ann Mesiti Alex Lussenhop Keith Allison
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The team of Associated Universities Inc. (AUI), Michigan State University (MSU), California Academy of Science (the Academy), Astronomical Society of the Pacific (ASP), and Association of Universities for Research in Astronomy (AURA), will bring together experts in astronomy, STEM education, and planetarium show production. This work will tell the story of the people and places that make "big astronomy" possible, particularly the search for exoplanets and understanding of how planets form. The show and related materials will be presented in dozens of venues around the USA and internationally. Through a planetarium show and learning experiences that extend beyond the theater, the team will take visitors to extreme sites of the NSF ground-based observatories on the mountains of Chile and meet the diverse people who enable amazing discoveries in astronomy. In addition, the project develops the Dome+ model, which ensures engagement does not end with the planetarium. Dome+ will include additional content, weekly virtual sessions with STEM professionals, and a suite of closely linked outreach activities. Dome+ will serve as a model to extend engagement and increase the impact of future planetarium shows. Project goals include 1) increasing awareness of the research in astronomy being made at the NSF-funded observatories in Chile, 2) increasing awareness and interest in diverse STEM career opportunities at large observatories and related institutions in the USA, 3) increasing knowledge of science enabled by big observatories, 4) increasing Latinx perceptions as someone who can have a career at a major observatory, and 5) developing the Dome+ model and identify best practices for implementation. Iterative and summative evaluation of the project by collaborators at MSU will address four main questions: How does the Dome+ model affect visitors' perceptions of diversity of careers in STEM? How does the Dome+ model affect visitors' interest and understanding of Chile as an ideal observing location for astronomy? How does the Dome+ model support visitors' interest and understanding of the science of exoplanets? How do planetariums implement Dome+, and how does implementation affect the outcomes for visitors? The impact assessment component of this project takes places in four phases. The goals of the first phase are to leverage the expertise of the research team to inform the creation of the planetarium show and to set up a robust research agenda to be achieved in Years 2-4 of the project. The goals of the second phase are to collect preliminary data from visitors on their responses to planetarium show content and to use this information to advise on edits to the show and to develop the content and format of the web-portal and educational materials. The goal of the third phase is to then collect data on how effectively the technology-rich environments of the three components of the Dome+ model (planetarium show, web-portal, educational materials) work in concert to reach the intended goals of changing visitors' perceptions of diversity in STEM, engaging visitors with astronomy content on exoplanets, and exposing visitors to the wonders of astronomy research in Chile. The goal of the fourth phase is to perform data analysis, synthesize findings and make recommendations for future implementations of the Dome+ model for practitioners. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Timothy Spuck Vivian White Ryan Wyatt Shannon Schmoll National Radio Astronomy Observatory
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Exhibitions
In March of 2016, a total solar eclipse occurred in the southwestern pacific; and in August of 2017, a total solar eclipse occurred across a broad swath of the United States. The Exploratorium launched a 2.5
year public education program—Navigating the
 Path of Totality—that used these two
 total solar eclipses as platforms for
 sparking public engagement and learning 
about the Sun, heliophysics, and the STEM
 content related to both. These sequential
 eclipses provided an unprecedented
 opportunity to build and scaffold public
 engagement and education. Our strategy was to 
start the public engagement process with the 
2016 eclipse, nurture that engagement with
 resources, activities and outreach during the 17
 months between the eclipses, so that audiences (especially in the U.S., where totality was visible in multiple areas across the country) would be excited, actively interested, and prepared for deeper engagement during the 2017 eclipse. For the August 2017 eclipse, the Exploratorium produced live telescope and program feeds from Madras, OR and Casper, WY. The Exploratorium worked with NASA to leverage what was a once-in-a-lifetime experience for millions to bring heliophysics information and research to students, educators, and the public at large through a variety of learning experiences and platforms.

The core of this project was live broadcasts/webcasts of each eclipse. To accomplish these objectives, the Exploratorium produced and disseminate live feeds of telescope-only images (no commentary) of each eclipse originating them from remote locations; produce and disseminate from the field live hosted broadcasts/webcasts of each eclipse using these telescope images; design and launch websites, apps, videos, educator resources, and shareable online materials for each eclipse; design and deliver eclipse themed video installations for our Webcast studio and Observatory gallery in the months that lead up to each eclipse and a public program during each eclipse; and conduct a formative and summative evaluation of the project. 


These broadcasts/webcasts and pre-produced videos provide the backbone upon which complementary educational resources and activities can be built and delivered. Programs and videos were produced in English and Spanish languages. As a freely available resource, the broadcasts/webcasts also provide the baseline content for hundreds if not thousands of educational efforts provided by other science-rich institutions, schools, community-based organizations, and venues. Platforms such as NASA TV and NASA website, broadcast and online media outlets such as ABC, NBC, CBS, CNN, MSNBC and PBS, as well as hundreds of science institutions and thousands of classrooms streamed the Exploratorium eclipse broadcasts as part of their own educational programming, reaching 63M people. These live broadcasts were relied upon educational infrastructure during total solar eclipses for institutions and individuals on the path and off the path alike.
DATE: -
TEAM MEMBERS: Robert Semper Robyn Higdon Nicole Minor
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will advance knowledge in the design of interest triggers for science in immersive digital simulation learning games. When learners are interested in a topic, it can have a profound impact on the quality of their learning. Although much is known about how informal learning experiences can promote interest in STEM, much less research has addressed links between technology use and interest development. This Exploratory Pathways project will investigate (1) the impact of entertainment technology use by middle school learners on STEM interest development, (2) the design of interactive educational technologies created specifically to trigger interest in astronomy, and (3) informal learning resources for sustained interaction with STEM content over time. In particular, learners will have the opportunity to interactively explore the scientific consequences of considering alternative versions of Earth via "What if?" questions, such as "What if the earth had no moon?" or "What if the earth were twice its current size?". While using the simulations, learners will be invited to make observations and propose scientific explanations for what they see as different. Given recent discoveries of potentially habitable worlds throughout the Galaxy, such questions have high relevance to public discourse around space exploration, conditions necessary for life, and the long-term future of the human race. Studies will occur across three informal learning settings: museum exhibits, afterschool programs, and summer camps, and are driven by the following research questions: What technology-based triggers of interest have the strongest influence on interest? Which contextual factors are most important for supporting long-term interest development? And, what kinds of technology-based triggers are most effective for learners from audiences who are underrepresented in STEM? This research will result in an empirically tested approach for cultivating interest that will allow educators to leverage the "What if?" pedagogy in their own work, as well as downloadable materials suitable for use in both informal and formal learning settings.

Planned studies will identify features that are effective in triggering interest, with an emphasis on groups underrepresented in STEM, and elaborate on the importance of engaging learners in explanatory dialogues and in service of interest development. It is hypothesized that interacting in such novel ways can act as a trigger for interest in astronomy, physics, and potentially other areas of STEM. Design iterations will also investigate different forms of learning supports, such as guidance from facilitators, collaboration, and automated guidance available within the simulations, and identify how features vary with respect to learning contexts. Data collected will include interview and survey data to track interest development, measures of knowledge in astronomy and physics, and log files of simulation use to better understand how behaviors in the simulations align with stated interests. Results of the studies will advance the theoretical understanding of interest development and its relationship to interactive experiences, and will also have practical implications for the deployment of technology in informal settings by identifying features critical for triggering the interest of middle school learners. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: H Chad Lane Jorge Perez-Gallego Neil Comins
resource project Media and Technology
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.

During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
DATE: -
TEAM MEMBERS: David Reitze
resource project Media and Technology
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
DATE: -
TEAM MEMBERS: Alan Winick
resource project Media and Technology
Prince George’s County Public Schools (PGCPS) Howard B. Owens Science Center (HBOSC) will infuse NASA Earth, Heliophysics, and Planetary mission science data into onsite formal and informal curriculum programs to expand scientific understanding of the Earth, Sun, and the universe. The goal of the project is to develop a pipeline of programs for grades 3-8 to enhance teacher and student understanding of NASA Science Mission Directorate (SMD) Earth, Planetary, and Heliophysics science and promote STEM careers and understanding of NASA career pathways using the HBOSC Planetarium, Challenger Center and classrooms. During the school year, PGCPS students in Grades 3 through 8 will experience field trip opportunities that will feature NASA Sun-Earth connection, comparative planetology, Kepler Exoplanet data, and NASA Space Weather Action Center data. PGCPS Grade 3 through 8 teachers will receive summer, day, and evening professional development in comparable earth and space science content both engaging the HBOSC Planetarium and Challenger facility and its resources. The students and teachers in four PGCPS academies (Grades 3 through 8) will serve as a pilot group for broader expansion of the program district-wide. ESPSI will provide opportunities for county-wide participation through community outreach programs that will promote NASA Earth, Heliophysics, and Planetary mission data. Community outreach will be offered through piloting the Maryland Science Center outreach program to four of PGCPS southern located schools and monthly evening planetarium shows along with quarterly family science nights that will include guest speakers and hands-on exhibits from the local science community and Goddard Space Flight Center (GSFC).
DATE: -
TEAM MEMBERS: Kara Libby
resource project Media and Technology
Bridging Earth and Mars (BEAM): Engineering Robots to Explore the Red Planet engages the general public and K-8 students in exhibits and programs designed to foster awareness of robotic technology, computer programming, and the challenges and opportunities inherent in NASA missions and S-STEM careers. The Saint Louis Science Center (SLSC) of St. Louis, Missouri is the lead institution and project site; partners include Washington University in St. Louis, Saint Louis University, the St. Louis regional FIRST Robotics organization, and the Challenger Learning Center-St. Louis. Project goals are to: 1) inform, engage, and inspire the public to appreciate NASA’s Mission by sharing findings and information about NASA’s missions to Mars; 2) ignite interest in S-STEM topics and careers for diverse K-8 students; and, 3) encourage students in grades 6-8 to sustain participation in educational experiences along the S-STEM careers pipeline. The SLSC will design and build a Martian surface and panorama where two rovers can be remotely controlled. Visitors in the McDonnell Planetarium will use controllers to program rover exploration of the Martian landscape in real-time. Visitors in SLSC’s Cyberville gallery, located one-quarter mile away across a highway-spanning enclosed bridge, will program the second rover with simulated time lag and view its movements via a two-way camera system. SLSC will organize and host a series of Innovation Workshops for K-8 students, each featuring teamwork-building engineering challenges from current and updated NASA-based science curricula. Participants will be recruited from SLSC community partners, which include community centers and faith-based programs for underserved families.
DATE: -
TEAM MEMBERS: Bert Vescolani John Lakey Paul Freiling