The Children's Museum of Wilmington will renew and expand its STEM All-Stars program for at-risk and underserved youth to enhance and apply their knowledge of STEM concepts in a fun, safe, and contemporary learning environment. Twice per month from January through May in 2019 and 2020, a third-grade class will visit the Children's Museum of Wilmington for two-to-one student to faculty ratio workshops exploring states of matter, the wonders of the solar system, various science career paths, and more through activities which complement the NC Science Standard Curriculum. Students will document their workshop experiments, hypotheses, and findings in personal journals. Project goals include improving students' competence in STEM concepts, nurturing student enthusiasm for STEM subjects, and encouraging students to pursue careers in STEM-related areas. Teachers will be asked to participate in two assessments per year to evaluate the STEM All-Stars' impact on student interest and learning.
In the From Project Mercury to Planet Mars project, the Museum of Science is partnering with national leaders to create two resources, each geared to a different style of learner, that strengthen engineering education and immersive experiences in the nation’s informal education environment. The Museum of Science is collaborating with the Smithsonian National Air and Space Museum and Albert Einstein Planetarium in Washington D.C., the Clark Planetarium in Salt Lake City, Utah, the Adventure Science Center and Sudekum Planetarium in Nashville, Tennessee, and the Tech Museum of Innovation in San Jose, California. Through the development of a Planetarium show engaging audiences in the excitement of a human journey to Mars, and a large-scale engineering design challenge activity that allows participants to create design solutions to a Mars exploration challenge, the goal of From Project Mercury to Planet Mars is to increase student and public awareness of human space exploration and inspire the next generation of engineers and scientists. Planetarium show viewers are expected to demonstrate an increased appreciation and interest in future activities in engineering and science, and learn about the technical challenges of space exploration. Design challenge participants are expected to actively engage in the engineering design process and in engineering habits of mind.
The Museum of Science, Boston led the From Project Mercury to Planet Mars: Introducing Engineering and Inspiring Youth through Humanity’s Greatest Adventure project (FPMPM) as a way to produce and share high-quality informal engineering education opportunities about the topic of human space travel to Mars. The grant involved the creation of two products that address human space travel to Mars: an immersive full-dome planetarium show and a hands-on engineering design challenge. To evaluate the grant work, the Research & Evaluation Department at the Museum of Science, Boston conducted a
DATE:
TEAM MEMBERS:
Annette SawyerKatie ToddLeigh Ann MesitiAlex LussenhopKeith Allison
This is the summative evaluation for the My Sky Tonight: Early Childhood Pathways to Astronomy is a National Science Foundation funded Full-Scale Development project that was designed to support informal science education practitioner’s ability to provide astronomy learning for young children ages 3-5 years. Based on prior research and assessment of the field, the project team identified that many informal educators lack the astronomy content, interpretive strategies, and confidence they need to effectively engage audiences of families with preschool-aged children. Three mechanisms were
Exploration Place, with funding from the National Aeronautics and Space Administration (NASA), contracted RK&A to conduct a summative evaluation of Design Build Fly, an exhibition and program series that explores what happens behind-the-scenes in Wichita’s aircraft plants. The goals of the study were to identify how visitors use the exhibition, explore what meaning visitors make from Design Build Fly, and understand to what extent visitors’ meaning-making aligns with intended outcomes.
How did we approach this study? RK&A conducted timing and tracking observations of visitors to the
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.
In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).
Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
In March of 2016, a total solar eclipse occurred in the southwestern pacific; and in August of 2017, a total solar eclipse occurred across a broad swath of the United States. The Exploratorium launched a 2.5 year public education program—Navigating the Path of Totality—that used these two total solar eclipses as platforms for sparking public engagement and learning about the Sun, heliophysics, and the STEM content related to both. These sequential eclipses provided an unprecedented opportunity to build and scaffold public engagement and education. Our strategy was to start the public engagement process with the 2016 eclipse, nurture that engagement with resources, activities and outreach during the 17 months between the eclipses, so that audiences (especially in the U.S., where totality was visible in multiple areas across the country) would be excited, actively interested, and prepared for deeper engagement during the 2017 eclipse. For the August 2017 eclipse, the Exploratorium produced live telescope and program feeds from Madras, OR and Casper, WY. The Exploratorium worked with NASA to leverage what was a once-in-a-lifetime experience for millions to bring heliophysics information and research to students, educators, and the public at large through a variety of learning experiences and platforms.
The core of this project was live broadcasts/webcasts of each eclipse. To accomplish these objectives, the Exploratorium produced and disseminate live feeds of telescope-only images (no commentary) of each eclipse originating them from remote locations; produce and disseminate from the field live hosted broadcasts/webcasts of each eclipse using these telescope images; design and launch websites, apps, videos, educator resources, and shareable online materials for each eclipse; design and deliver eclipse themed video installations for our Webcast studio and Observatory gallery in the months that lead up to each eclipse and a public program during each eclipse; and conduct a formative and summative evaluation of the project.
These broadcasts/webcasts and pre-produced videos provide the backbone upon which complementary educational resources and activities can be built and delivered. Programs and videos were produced in English and Spanish languages. As a freely available resource, the broadcasts/webcasts also provide the baseline content for hundreds if not thousands of educational efforts provided by other science-rich institutions, schools, community-based organizations, and venues. Platforms such as NASA TV and NASA website, broadcast and online media outlets such as ABC, NBC, CBS, CNN, MSNBC and PBS, as well as hundreds of science institutions and thousands of classrooms streamed the Exploratorium eclipse broadcasts as part of their own educational programming, reaching 63M people. These live broadcasts were relied upon educational infrastructure during total solar eclipses for institutions and individuals on the path and off the path alike.
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:
1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.
2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.
3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
Prince George’s County Public Schools (PGCPS) Howard B. Owens Science Center (HBOSC) will infuse NASA Earth, Heliophysics, and Planetary mission science data into onsite formal and informal curriculum programs to expand scientific understanding of the Earth, Sun, and the universe. The goal of the project is to develop a pipeline of programs for grades 3-8 to enhance teacher and student understanding of NASA Science Mission Directorate (SMD) Earth, Planetary, and Heliophysics science and promote STEM careers and understanding of NASA career pathways using the HBOSC Planetarium, Challenger Center and classrooms. During the school year, PGCPS students in Grades 3 through 8 will experience field trip opportunities that will feature NASA Sun-Earth connection, comparative planetology, Kepler Exoplanet data, and NASA Space Weather Action Center data. PGCPS Grade 3 through 8 teachers will receive summer, day, and evening professional development in comparable earth and space science content both engaging the HBOSC Planetarium and Challenger facility and its resources. The students and teachers in four PGCPS academies (Grades 3 through 8) will serve as a pilot group for broader expansion of the program district-wide. ESPSI will provide opportunities for county-wide participation through community outreach programs that will promote NASA Earth, Heliophysics, and Planetary mission data. Community outreach will be offered through piloting the Maryland Science Center outreach program to four of PGCPS southern located schools and monthly evening planetarium shows along with quarterly family science nights that will include guest speakers and hands-on exhibits from the local science community and Goddard Space Flight Center (GSFC).
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
Bridging Earth and Mars (BEAM): Engineering Robots to Explore the Red Planet engages the general public and K-8 students in exhibits and programs designed to foster awareness of robotic technology, computer programming, and the challenges and opportunities inherent in NASA missions and S-STEM careers. The Saint Louis Science Center (SLSC) of St. Louis, Missouri is the lead institution and project site; partners include Washington University in St. Louis, Saint Louis University, the St. Louis regional FIRST Robotics organization, and the Challenger Learning Center-St. Louis. Project goals are to: 1) inform, engage, and inspire the public to appreciate NASA’s Mission by sharing findings and information about NASA’s missions to Mars; 2) ignite interest in S-STEM topics and careers for diverse K-8 students; and, 3) encourage students in grades 6-8 to sustain participation in educational experiences along the S-STEM careers pipeline. The SLSC will design and build a Martian surface and panorama where two rovers can be remotely controlled. Visitors in the McDonnell Planetarium will use controllers to program rover exploration of the Martian landscape in real-time. Visitors in SLSC’s Cyberville gallery, located one-quarter mile away across a highway-spanning enclosed bridge, will program the second rover with simulated time lag and view its movements via a two-way camera system. SLSC will organize and host a series of Innovation Workshops for K-8 students, each featuring teamwork-building engineering challenges from current and updated NASA-based science curricula. Participants will be recruited from SLSC community partners, which include community centers and faith-based programs for underserved families.