The Virginia Air and Space Center will enhance its Space Gallery exhibit and increase its capacity to deliver high-quality, high-impact STEM programming. The museum will purchase, adapt, and install three interactive, digital exhibits that will complement existing displays and enhance visitors’ overall experiences. The digital exhibits will include a moon lander that users can pilot; a simulated Mars rover and micro-copter that will allow guests to navigate a Martian atmosphere and surface; and a stellar playground where users can build their own solar system through an intuitive touch-interface that incorporates planets, stars, violent supernovas, black holes, and other space oddities. The project team will develop new curricula related to the exhibits to use with school groups and summer camps.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
This poster describes Skynet Junior Scholars (NSF award numbers 1223687, 1223235, 1223345) project. Skynet Junior Scholars engages middle and high school aged youth in the study of the Universe using the same tools as professionals by: targeting youth audience enrolled in the 4-H program; building accessibility standards into the SJS design ; using research quality, multi-wavelength telescopes. These telescopes are part of the Skynet Robotic Telescope Network.
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
Exoplanets Exploration is an interactive exhibition to explore exoplanets for the primary audience of students grades 5th through 12th with a secondary audience of younger children and adults. The exhibition is located in the astronomy wing of the Boonshoft Museum of Discovery (Dayton, Ohio). The project goals are to provide a STEM base for visitors from which to explore exoplanet discoveries; for them to have a basic understanding of exoplanet missions, instruments used in the discoveries, and the science knowledge necessary to understand the discoveries; to learn about the exoplanet discoveries through hands-on tactile, auditory, visual, and kinesthetic interactive exhibition components; and to challenge visitors to contemplate the possibility of life elsewhere in the universe. Aspects of the exhibition are integrated into space-related programming by linking to school visits, Distance Learning programs, summer Discovery Camps, FIRST LEGO league, and homeschool programming. Components of the exhibition addresse relevant Ohio Academic Content Standards for Earth and Space Science and will evolve to incorporate new Next Generation Science Standards. With the STEM career information presented along with scientific learning, students will be able to visualize the possibilities that NASA and space science represents.
NASA STEM Educational Project for the Goddard Greenbelt and Wallops Visitor Center and the Independent Verification and Validation (IV&V) Facility Education Resource Center is a project designed to provide high value STEM education activities. The Goddard Office of Education is fortunate to have three facilities (Greenbelt, WFF and IV&V) that coordinate to produce high impact, sustainable results using NASA’s unique capabilities for their education customers which include visitors, K-16 students, educators and science centers, museums and planetariums. The Greenbelt project elements will take our current Visitor Center in the direction of the Science Education and Exploration Center (SEEC). This project includes utilizing the GeoDome portable planetarium with underserved populations, expanding STEM engagement programs held at the Visitor Center and growing the network of museum partners that implement programs through an experiential workshop held in September 2012. This project also includes support for a summer experience for students and educators for the SEEC held July 2012. The WFF elements of the project include developing educational exhibits and information on NASA’s WFF missions and launches. A presentation on the LADEE orbital moon mission is being developed for the Science on a Sphere. Content is being developed for a kiosk with hands-on exhibits for students that inspire them in STEM fields and based on NASA’s Suborbital and Orbital missions at Wallops Flight Facility. The IV&V elements leverage past NASA and Visitor Center investments, content, and programs. Using the IR camera enables sharing science and engineering information about missions such as the James Webb Space Telescope to a broader audience. IV&V is using the Space Weather kit to train educators and students on space weather forecasting. Having IV&V as a partner allows us to target rural underserved populations with our programs.
Funded jointly by the Institute of Museum and Library Services (IMLS) and the MacArthur Foundation, in partnership with the and Association of Science-Technology Centers (ASTC) and Urban Libraries Council (ULC), Learning Labs in Libraries and Museums supports the planning and design of 24 learning labs in libraries and museums nationwide. The inaugural cohort of 12 sites ran from January 2012 to June 2013, and a second cohort of 12 additional sites began in January 2013 and will extend through June 2014. In addition to the primary awardees, most grants included additional institutional partners, resulting in a rich community including over 100 professionals from approximately 50 participating organizations (libraries, museums, universities, and community-based organizations). The labs are intended to engage middle- and high-school youth in mentor-led, interest-based, youth-centered, collaborative learning using digital and traditional media. Inspired by YOUmedia, an innovative digital space for teens at the Chicago Public Library, as well as innovations in science and technology centers, projects participating in Learning Labs are expected to provide prototypes for the field based on current research about digital media and youth learning, and build a "community of practice" among the grantee institutions and practitioners interested in developing similar spaces.
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.