The Children's Museum of Wilmington will renew and expand its STEM All-Stars program for at-risk and underserved youth to enhance and apply their knowledge of STEM concepts in a fun, safe, and contemporary learning environment. Twice per month from January through May in 2019 and 2020, a third-grade class will visit the Children's Museum of Wilmington for two-to-one student to faculty ratio workshops exploring states of matter, the wonders of the solar system, various science career paths, and more through activities which complement the NC Science Standard Curriculum. Students will document their workshop experiments, hypotheses, and findings in personal journals. Project goals include improving students' competence in STEM concepts, nurturing student enthusiasm for STEM subjects, and encouraging students to pursue careers in STEM-related areas. Teachers will be asked to participate in two assessments per year to evaluate the STEM All-Stars' impact on student interest and learning.
This report presents findings from the evaluation of four Pulsar Search Collaboratory (PSC) activities: online training, use of website, capstone events at hub institutions, and the PSC summer camp.
This is the summative evaluation for the My Sky Tonight: Early Childhood Pathways to Astronomy is a National Science Foundation funded Full-Scale Development project that was designed to support informal science education practitioner’s ability to provide astronomy learning for young children ages 3-5 years. Based on prior research and assessment of the field, the project team identified that many informal educators lack the astronomy content, interpretive strategies, and confidence they need to effectively engage audiences of families with preschool-aged children. Three mechanisms were
During the school year of 2017-2018, Fairchild Tropical Botanic Garden (Fairchild) implemented the second year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation. The evaluation activities conducted this year were focused on understanding project implementation and assessing project outcomes using data collected between September 2017 and May 2018. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS:
Catherine RaymondMarion LitzingerCarl LewisAmy Padolf
The Growing Beyond Earth Project (GBE) is a STEM education program designed to have middle and high school students conduct botany experiments, designed in partnership with NASA researchers at Kennedy Space Center, that support NASA research on growing plants in space. GBE was initiated by Fairchild Tropical Botanic Garden in collaboration with NASA's Exploration Research and Technology Programs and Miami-Dade County Public School District. Project goals are to: (1) improve STEM instruction in schools by providing authentic research experiments that have real world implications through curricular activities that meet STEM education needs, comprehensive teacher training, summer-long internships and the development of replicable training modules; (2) increase and sustain youth and public engagement in STEM related fields; (3) better serve groups historically underrepresented in STEM fields; and (4) support current and future NASA research by identifying and testing new plant varieties for future growth in space. During the 2016-17 academic year, 131 school classrooms participated in the program. To date, students have tested 91 varieties of edible plants and produced more than 100,000 data points that have been shared with the researchers at KSC.
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:
1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.
2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.
3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
Prince George’s County Public Schools (PGCPS) Howard B. Owens Science Center (HBOSC) will infuse NASA Earth, Heliophysics, and Planetary mission science data into onsite formal and informal curriculum programs to expand scientific understanding of the Earth, Sun, and the universe. The goal of the project is to develop a pipeline of programs for grades 3-8 to enhance teacher and student understanding of NASA Science Mission Directorate (SMD) Earth, Planetary, and Heliophysics science and promote STEM careers and understanding of NASA career pathways using the HBOSC Planetarium, Challenger Center and classrooms. During the school year, PGCPS students in Grades 3 through 8 will experience field trip opportunities that will feature NASA Sun-Earth connection, comparative planetology, Kepler Exoplanet data, and NASA Space Weather Action Center data. PGCPS Grade 3 through 8 teachers will receive summer, day, and evening professional development in comparable earth and space science content both engaging the HBOSC Planetarium and Challenger facility and its resources. The students and teachers in four PGCPS academies (Grades 3 through 8) will serve as a pilot group for broader expansion of the program district-wide. ESPSI will provide opportunities for county-wide participation through community outreach programs that will promote NASA Earth, Heliophysics, and Planetary mission data. Community outreach will be offered through piloting the Maryland Science Center outreach program to four of PGCPS southern located schools and monthly evening planetarium shows along with quarterly family science nights that will include guest speakers and hands-on exhibits from the local science community and Goddard Space Flight Center (GSFC).
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.