This Connecting Researchers to Public Audiences project plans to create a multimedia website, Into the Rift, a virtual journey to Lake Tanganyika in East Africa, along with teaching resources and a dissemination campaign. The content will focus on the high freshwater diversity of the 2nd largest lake in the world; the diverse array of cichlid fish in the lake; and the effects of overharvesting and global warming on the lake's ecosystem. The project's intended learning outcomes are that viewers will have enhanced awareness and understanding of: 1) the ecosystem-scale processes that support life in lakes; 2) the importance of intact natural ecosystems for the well-being of human societies; 3) the techniques that scientists use to learn more about the ecosystem-scale movement of matter and energy; and 4) potential career paths in STEM fields. These learning outcomes correlate to the current and proposed science standards, which provide a structure for content development and outcomes assessment. The project will be designed by the collaboration of an ecologist (the PI Dr. Yvonne Vadeboncoeur), education specialist (co-PI Dr. Lisa Kenyon), communication specialist (co-PI Dr. Elliot Gaines) all from Wright State University, and a media lab (Habitat Seven), and informed by formative evaluation conducted by Edu, Inc. The website, hosted by a guide from East Africa along with the PI, will be presented in three languages (Spanish, French, and Swahili) in addition to English. Edu, Inc. will also conduct a summative evaluation of all the components of the project with respect to the four intended learning outcomes and their related concepts as well as analyze the outcomes of the dissemination strategies. This CRPA uses internet technologies to make abstract scientific concepts and a largely inaccessible research location available to a wide audience. The project intends to inform and engage the audience with an aggressive use of social media in addition to the website. Into the Rift will provide material for both the lay audience and classrooms, including access to authentic scientific data to compare the Lake Tanganyika data to environmental data collected from the U.S. Great Lakes. Additional collaborations with established organizations, including Crossing Boundaries, Conservation Bridge and Community Bridges, will expand the reach and impact of the project to diverse audiences. The multi-lingual approach extends the reach to potentially an even greater audience both within and outside the U.S.
This Connecting Researchers and Public Audiences project will engage the public in understanding how species are born. The project builds on the PI's NSF-funded research on speciation and signal diversification in Monarcha Flycatchers of the Solomon Islands (NSF CAREER, #1137624). Project deliverables include a one-hour television program, website, and the use of social media. The team proposes to film an engaging tale that weaves historical research with modern molecular techniques to communicate to the public how new species are born. It will also illustrate the process of science and the people behind the research. The potential national audience is large, with a particular effort to reach 18-49 year olds. The program will be nationally distributed by one of the major television or cable channels. The website will provide a video gallery of short videos and photos, a blog from the field, and an in-depth learning section with new research about speciation. Evaluation of the project, conducted by Education Northwest, will focus on changes in audience knowledge and interest about speciation. The findings of the summative evaluation will be made available online at InformalScience.org.
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
This proposed Communicating Research to Public Audiences (CRPA) project outlines a pathway for communicating how climate change can affect a watershed area that supplies water for a specific region. The educational platforms will address the geology of the Caldera along with meteorology, ecology and hydrology. The project will focus on the ongoing scientific research processes and the impact of climate change to the physical system as well as to the citizens who depend on this resource. Partners in this endeavor include New Mexico EPSCOR, the University of New Mexico, the Valles Caldera National Preserve, the New Mexico Museum of Natural History and Science, Santa Fe Productions and Tim Aydelott Productions. The project team will create a PBS television documentary in English and Spanish, including a Native American Jemez Pueblo storyteller who will describe the natural environment of the Caldera. The team will also create a YouTube channel with updatable clips, a Facebook fan page, and a climate change exhibit. The evaluation will include front-end and summative components, and will be conducted by Minnick & Associates and Elsa Bailey Consulting. The intended impact of this CRPA is to educate the public about the importance of the Caldera in securing the region's water supply and how climate changes could impact their lives. Further, aspects of the multidisciplinary science used in this research will be described with the goal of encouraging more young people from the region to choose STEM careers.
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
Informal Community Science Investigators (iCSI) creates a network of four geographically diverse informal science institutions working together on strategies to engage youth ages 10-13 through location based augmented reality (AR) games played on smartphones. These high-interest, kid-friendly games will be used by families visiting the institutions and by youth who enroll in more intensive summer camp programs. Using AR games, participants will engage in playful but scientifically-grounded investigations drawing on each institution's research, exhibits, and natural spaces. For example, a botanical garden might engage young visitors through AR games with themes related to native and invasive species, while a zoo might create a game experience focusing on illegal wildlife trade. Participants in the iCSI summer camp program will have more intensive experiences, including work with the host institution's scientists, opportunities to develop original augmented reality games, and experiences with game-related service learning and citizen science programs. For both target groups (families and campers), the location specific games build understanding of both the institution's mission and the broader realm of scientific research and application. The project will test the notion of participants as "learner hero," the link between game play and the individual's development of competency, autonomy and the relationship to real world experience, in this case through community action on the subject of the game developed. To that end, participants will be encouraged to extend their involvement through related investigations on site and participation in community activities and projects that can be done at home. Social media tools such as Facebook and web sites managed by the host institutions will provide recognition for this extended engagement, helping participants maintain ties to the program. Additionally, program resources provide assistance to adult family members in nurturing and sustaining youth interest in STEM activities and careers. A major effort of the project will be development of a new software infrastructure called TaleBlazer for the augmented reality game that will enable teachers and students to develop their own game that incorporates real data collection and scientific model building. The new platform will enhance the game play platform MITAR developed with NSF funding.
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
This project is making enhancements to two existing websites, the Black Hole Encyclopedia and the Spanish version Enciclopedia de Agujeros Negros. The original websites were created by the PI under his NSF CAREER grant. The enhancements include 20 additional black holes in the Directory section, new listings in the Popular Culture section, profiles of six leading black hole researchers (including the PI), audio podcasts, a new section on the history of black hole research, and extensive graphics and animations. The evaluation of the website is expected to add to the informal science education community's knowledge of how the internet is being used to support science learning.
Exploring the Euteleost Tree of Life represents the education and outreach of the Euteleost Tree of Life assembling the tree of life research grant (NSF DEB Grant No. 0732819; PI: Ed Wiley) it includes a curriculum activity and a interactive fish tree. Investigating a Deep Sea Mystery, a curriculum module for high school and undergraduate students follows the research of project collaborator Dave Johnson (Smithsonian Institution) to explore deep sea fish phylogeny. The module includes an investigation of What is a fish?, fish anatomy and morphology, and how different lines of evidence (morphological and molecular) can be used to study evolutionary relationships. A fisheye view of the tree of life is a web module featuring an interactive fish tree of life highlight with a series of mini-stories Web material is still in the early stages of development, and will include a splash page with a simplified clickable fish tree through which the different.
In 2012, Concord Evaluation Group (CEG) conducted an evaluation of the impact of Peep and the Big Wide World (Peep) resources on Spanish-speaking families with preschool-aged children. The three-pronged evaluation included a National Family Study in which 112 Spanish-speaking families who used the Peep resources were compared to Spanish-speaking families who did not use the Peep resources. It also included an In-Depth Family Study -- an experiment conducted in the metro Boston area in which 36 Spanish-speaking families who used the Peep resources were compared to Spanish-speaking families who