This pathways project would refine and test a game based on the Kinect technology gaming tool to teach seismology concepts in an informal education setting and how they apply to phenomenon in other STEM fields. The game will be developed as a companion tool to the "Quake Catcher Network" a low-cost network of seismic sensors in schools, homes and offices world-wide and tie-ins with seismology programs such as the great California ShakeOut with a participant base of 8.6 million. The project design would select three new learning modules, chosen by a group of scientists and educators, to incorporate into the game and evaluate player experience and knowledge gain. The activities will be conducted at a partner test site, an aquarium, frequented by area youth 8 - 12 years old. The focus of the effort is to add to the knowledge of how gaming can be used effectively in informal learning environments The game places the player as a scientist, allowing the player to make decisions about seismic station deployment strategies following an earthquake, installing the sensors and monitoring incoming data. The game has levels of difficulty and players accrue points by acting swiftly and correctly. Learning goals for the project include making abstract math concepts understandable; involve participants in data collection and the process of scientific investigation, plus demonstrate how scientists and mathematicians use tools of their fields to address real-world issues.
The University of Southern California (USC) will build on prior work to test a robust model for assessing player content engagement and social interactions within an augmented reality game (ARG). In partnership with No Mimes Media, USC will use machine learning algorithms to make automated player inferences to customize game play. The content focus of the game will span a range of STEM disciplines, with a special emphasis on earth science content and scientific investigation & experimentation reasoning. High school youth from underserved communities in Los Angeles will be recruited to participate in the endeavor. This pathways project will use various "rabbit hole" techniques to attract freshmen and sophomore students from partner charter schools to the online game. The rabbit hole strategies may include cryptic posters, inquisitive signs, & SQR codes strategically placed in plain and open view of the target group. The game will be fully accessible to the target group online. During the ARG experience, youth players will encounter STEM concepts and scientific problems. Antagonistic characters will promulgate scientific misconceptions and nonscientific reasoning and challenge players to employ their scientific knowledge and skills to level-up, gain badges, and move through the game. As game play persists, machine learning algorithms will gather data on the players learning competencies and social interactions within the game. These data will be aggregated and analyzed to assess learning and interactions within the ARG environment. Additional analyses will be conducted by the mixed methods approach the external evaluation group, CRESST, will employ for the project formative and summative evaluations. Approximately 300 youth, within the target grade levels, are expected to participate in the gaming experience. However, given that access to the game and assessment tools will expand beyond the target group, the potential reach of the project could be much greater. Further, the stated aim of the project is not only to produce a scalable model for broad implementation but it also endeavors to provide puppetmasters with research and assessment tools to create more individualized experiences and improved learning outcomes for players within ARG environments.
DATE:
-
TEAM MEMBERS:
Yu-Han ChangJihie KimRajiv Maheswaran
Produced by Twin Cities Public Television, St. Paul, MN, and sponsored by the National Science Foundation, SciGirls (SG) is a multimedia project for upper grade-school and middle-school tweens. Weekly half-hour episodes are tied in with web and outreach activities in the fields of science, technology and engineering. Multimedia Research, an independent evaluation group implemented a summative evaluation of the SG Season Two multimedia project. Fifth grade girls (N = 87) viewed three shows over three weeks. They could visit the SG website at any time but were required to visit and play a Pick'm
DATE:
TEAM MEMBERS:
Barbara FlaggTwin Cities Public Television
This project will create and study Kids' Survey Network as an exemplar of a new, replicable model of informal learning called an apprenticeship network. The project will develop the data literacy of future learners, workers, and citizens by empowering participants aged 11-14 to develop survey projects to address their own questions about local community issues. Research on the project will illuminate core questions relating to the design and potential impact of the apprenticeship network, including social and motivational dynamics, community and technology-based scaffolding, educational game genres, and conditions of effective use. The project deliverables include four components: (1) a web-based community of practice; (2) a common set of tools; (3) a suite of learning games and tutorials; and (4) structures for tiered, team-based advancement. Tertl Studios LLC and MIT's Education Arcade will develop the learning games, SRI International will conduct the evaluation, leading regional and national informal education organizations will provide test bed sites, and professional survey research organizations will provide technical and volunteer assistance.
DATE:
-
TEAM MEMBERS:
Elizabeth RoweDiana NunnaleyChristopher Hancock
The Cornell Lab of Ornithology is creating a new type of interactive, question-driven, online bird-identification tool called "Merlin," along with associated games, social networking tools, and other media. Unlike existing bird-identification guides, which are based on traditional taxonomic keys written by scientists, Merlin uses machine learning algorithms and crowd-sourced data (information provided by thousands of people) to identify birds and improve Merlin's performance with each interaction. The tool will help millions of people identify birds and participate in a collective effort to help others. The Crowd ID project will make it easier for people to discover the names of birds, learn observation and identification skills, find more information, and appreciate Earth's biodiversity. The summative evaluation plan is measuring increases in participants' knowledge, engagement, and skills, as well as changes in behavior. Impacts on participants will be compared to a control group of users not using Merlin. Merlin tools will be integrated into the Cornell Lab's citizen science and education projects, which reach more than 200,000 participants, schoolchildren, and educators across the nation. Merlin will be broadly adapted for use on other websites, social networking platforms, exhibits, mobile devices, curricula, and electronic field guides. Once developed, Merlin can be modified to identify plants, rocks, and other animals. Merlin will promote growth of citizen science projects which depend on the ability of participants to identify a wide range of organisms.
The University of Central Florida Media Convergence Laboratory, New York Hall of Science, and the Queens Museum of Art are developing a 3-D, multi-user virtual environment (MUVE) of the 1964/65 New York World's Fair. Virtual fairgoers of all ages will be immersed in an accurately modeled historical world with more than 140 pavilions on science, technology, engineering, and mathematics (STEM) disciplines and an array arts and humanities exhibits. The virtual world can be freely explored through self-designed avatars, and avatar-led guided tours. Discovery Points throughout the virtual environment will afford opportunities for in-depth engagement in STEM topics that will empower participants to explore the broader consequences of technological innovations. The centerpiece of user-generated content is FutureFair, an area where online users can create and share their personal visions of the future. Interconnections reaches beyond its virtual component through its partnership with the New York Hall of Science and the Queens Museum of Art, which are both situated in the heart of Queens in Flushing Meadows Corona Park, a 1255 acre urban park that hosted the 1939/1940 and 1964/65 Fairs. The New York Hall of Science will provide face-to-face youth workshops that employ problem-based learning. Single and multi-session programs will connect adolescents to STEM content presented at the Fair through the virtual world environment. Participants will create multimedia content for inclusion in the project's website. Multi-touch interactive stations at the Queens Museum of Art will enhance their NY World's Fair Exhibit Hall by empowering visitors to individually or collectively explore various STEM topics and the symbiotic relationships between STEM and the humanities, and by serving as an attractor for visitors to the online Fair exploration. The project will be completed in time for the 50th Anniversary celebration of the 1964 World's Fair. Building upon prior research on learning in virtual worlds, the project team will investigate how STEM concepts are advanced in a simulated multi-user virtual environment and studying the effectiveness of using Virtual Docents as enhancements to the informal learning process. The research and development deliverables have strong potential to advance the state of informal science education, research on modeling and simulation in virtual world development, and education research. Michigan Technological University will conduct the project formative and summative evaluations.
DATE:
-
TEAM MEMBERS:
Lori WaltersMichael MoshellCharles HughesEileen Smith
LOOP is a new multiplatform, environmental project designed to help young children, ages 6-8, explore ecosystems and understand the science and systems of the natural world. Built upon a curriculum that moves beyond the 3Rs (reduce, reuse, recycle), the goal is to help lay the foundation for a lifelong interest in the science of sustainability. Deliverables include: a 20-episode television series with animated stories and live-action segments which feature families and children; an online game to immerse players in the same ecosystems seen on television; Loop Live Missions (outdoor science activities); and an afterschool/camp curriculum designed to get children and families outside to explore natural systems. Promotion of LOOP's educational resources will be undertaken through a partner network including the U.S. Forest Service, Children & Nature Network, National Recreation and Park Association, American Camp Association, National Summer Learning Association, Girl Scouts of the USA, and the Boys & Girls Clubs of America. LOOP is produced by WGBH in Boston and intended for national distribution on PBS. The project design creates an "interactive learning loop" which cycles between the television series, the Website, and outdoor science activities. The intended impacts are to: (1) deliver educational media to the target audience that increases their understanding of science and sustainability issues; (2) model and teach science concepts and scientific habits of mind; and (3) connect children and their families to the natural world. Concord Evaluation Group will be responsible for conducting formative and summative evaluation of the project. The summative evaluation is designed to measure project impacts with respect to change in behavior and attitudes, as well as science learning. The results of the evaluation will inform the curriculum for the current and future seasons of LOOP and contribute to the growing knowledge base of how media can effectively promote and teach substantive science to the young.
MIT Education Arcade, in partnership with the Smithsonian Institution, designed and developed Vanished, an eight-week environmental science game as a new genre called the curated game, a hybrid of museum-going, social networking, and online gaming. Middle school aged participants engaged in Earth systems science to study a range of environmental issues associated with mass extinction. Though the game was structured around a fictional scenario--communication with visitors from the future--it posited a future affected by current environmental issues and conditions, and encouraged participants to apply systems thinking as a means to understand how these current conditions led to environmental disruptions. As part of the game play participants studied, applied, and integrated knowledge and skills from multiple sources, including Earth science, ecology, astronomy, and archaeology, and forensic anthropology. An Advisory Board and contributing scientists were be involved. The project team is currently analyzing data collected from the game to test the hypothesis that the game play would allow youth, ages 11-14, to increase their understanding of the scientific process and increase their motivation to learn more science. This summative evaluation is being conducted by TERC Inc. A Curated Game Handbook will be produced to disseminate project results as a model for new applications of game-based learning. Open source software created as part of the game has been made available, and should enable future developers in informal science education to build directly upon these foundational efforts.
DATE:
-
TEAM MEMBERS:
Eric KlopferConrad LabandeiraScot OsterweilStephanie Norby