Evidence for the present study derives from a sample of 574 middle-grades students that participated in the River City Project (RCP) in academic year 2006-07. Central to the RCP is an open-ended video-game-like learning innovation for teaching inquiry-based science and twenty-first century skills. Results of investigation into the students' neomillennial learning styles revealed that, on average, students who (1) prefer creating and sharing artifacts through the Internet are well-suited for learning about disease transmission and scientific problem solving skills in the RCP; and (2) students
The Nanomedicine Explorer kiosk at the Museum of Science, Boston provides opportunities to learn about nanomedicine, nanotechnology, cancer biology, new research in cancer diagnosis and therapy, and the process of medical research from bench to bedside. This report is the formative evaluation of the prototype of this kiosk, presenting the results of visitor observations, exit surveys, and interviews. The findings of these data served to provide the Nanomedicine Explorer production team a basis from which to make improvements to the program, which was released as Version 1.0 in May of 2009
This documents the formative evaluation of Diffusion (aka Mixing Molecules), an immersive video interactive display demonstrating the collision of molecules.
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE:
-
TEAM MEMBERS:
Katherine PerkinsMichael DubsonNoah FinkelsteinRobert ParsonCarl Weiman