The integration of research with education and outreach is an essential aspect of our Center's mission. In order to assure the most effective use of our expertise and resources, we have developed a multi-faceted approach with activities that focus on coherent themes that address our three primary audiences: research community, our neighborhood, and the general public. These activities include research internships, enrichment programs for students & teachers, and informal science opportunities.
At the CSMC, we have three main goals for our Outreach and Education activities, and we do our best to accomplish all three goals with all of our programs and activities. These goals include increasing young peoples' interest in STEM, increasing adults' appreciation of the importance of publicly funded research, and professional development for our students, post docs and PIs. With that in mind, we have created a suite of education and outreach programs that highlight professional development for the people doing the outreach while also accomplishing our outreach goals. Our programs include hosting local and regional Science Pub events, participating in Meet-a-Scientist style outreach events at schools and science and technology centers, and something called the Oregon Outreach Days tours. These tours combine a Science Pub event for the public in the evening with meetings with business, political and educational leaders during the day.
The UMN MRSEC conducts an ambitious and multi-faceted education and outreach program to extend the impact of the Center beyond the university, providing undergraduates, college faculty, high school teachers, and K-12 students with opportunities that augment their traditional curriculum and increase their appreciation of materials science and engineering (MS&E). Our summer research program provides high-quality research and educational experiences in MS&E to students and faculty, drawn primarily from undergraduate institutions with limited research opportunities, while placing a strong emphasis on inclusion of women and members of underrepresented groups.
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.
We a have full slate of programs including science academies for underrepresented high school and middle school students; Large programs for the public including holiday lectures, stars of materials science lectures, materials science and nano days for the public; Teacher development programs including Research Experience for Teachers and Teachers as Scholars; Research Experience for Undergraduates; Graduate Summer School on Condensed Matter; and many other programs.
The Center for Sustainable Polymers implements and fosters a wide range of educational and public outreach activities. Our faculty, researchers, students, and staff work together to engage the public and educate the citizenry and policy makers on the societal importance of sustainable polymers and technologies. An important aspect of the CSP’s work is to broaden the participation of underrepresented groups in science, technology, engineering, and math (STEM) fields by relying on key community partners.
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE:
-
TEAM MEMBERS:
Katherine PerkinsDaniel SchwartzMichael DubsonNoah Podolefsky
The PhET Interactive Simulations group at the University of Colorado is expanding their expertise of physics simulations to the development of eight-to-ten simulations designed to enhance students' content learning in general chemistry courses. The simulations are being created to provide highly engaging learning environments which connect real life phenomena to the underlying science, provide dynamic interactivity and feedback, and scaffold inquiry by what is displayed and controlled. In a second strand of the project, a group of experienced faculty participants are developing and testing lecture materials, classroom activities, and homework, all coordinated with well-established, research-based teaching methods like clicker questions, peer instruction, and/or tutorial-style activities, to leverage learning gains in conjunction with the simulations. The third strand of the project focuses on research on classroom implementation, including measures of student learning and engagement, and research on simulation design. This strand is establishing how specific characteristics of chemistry sim design influence engagement and learning, how various models of instructional integration of the sims affect classroom environments as well as learning and engagement, and how sim design and classroom context factors impact faculty use of sims. To ensure success the project is basing sim design on educational research, utilizing high-level software professionals (to ensure technically sophisticated software, graphics, and interfaces) working hand-in-hand with chemistry education researchers, and is using the established PhET team to cycle through coding, testing, and refinement towards a goal of an effective and user friendly sim. The collection of simulations, classroom materials, and faculty support resources form a suite of free, web-based resources that anyone can use to improve teaching and learning in chemistry. The simulations are promoting deep conceptual understanding and increasing positive attitudes about science and technology which in turn is leading to improved education for students in introductory chemistry courses both in the United States and around the world.
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE:
-
TEAM MEMBERS:
Katherine PerkinsMichael DubsonNoah FinkelsteinRobert ParsonCarl Weiman