This project entails the creation of a coordinated colony of robotic bees, RoboBees. Research topics are split between the body, brain, and colony. Each of these research areas is drawn together by the challenges of recreating various functionalities of natural bees. One such example is pollination: Bees coordinate to interact with complex natural systems by using a diversity of sensors, a hierarchy of task delegation, unique communication, and an effective flapping-wing propulsion system. Pollination and other agricultural tasks will serve as challenge thrusts throughout the life of this project. Such tasks require expertise across a broad spectrum of scientific topics. The research team includes experts in biology, computer science, electrical and mechanical engineering, and materials science, assembled to address fundamental challenges in developing RoboBees. An integral part of this program is the development of a museum exhibit, in partnership with the Museum of Science, Boston, which will explore the life of a bee and the technologies required to create RoboBees.
DATE:
-
TEAM MEMBERS:
Robert WoodRadhika NagpalJ. Gregory MorrisettGu-Yeon WeiJoseph Ayers
This research explores how to support collaborative learning practices when science museum visitors employ their own personal mobile devices as Opportunistic User Interfaces (O-UIs) to manipulate a simulation-based museum exhibit. The sophisticated graphical capabilities of modern mobile devices have the potential to distract visitors, a phenomenon known as the heads-down effect. To study the impact of O-UI design on collaboration, a highly-dynamic "complex" O-UI was contrasted against more simplistic, "remote-control" OUI design, in the context of a cancer-treatment simulation. As expected
Much of the work done in the field of tangible interaction has focused on creating tools for learning; however, in many cases, little evidence has been provided that tangible interfaces offer educational benefits compared to more conventional interaction techniques. In this paper, we present a study comparing the use of a tangible and a graphical interface as part of an interactive computer programming and robotics exhibit that we designed for the Boston Museum of Science. In this study, we have collected observations of 260 museum visitors and conducted interviews with 13 family groups. Our
DATE:
TEAM MEMBERS:
Michael HornErin SoloveyR. Jordan CrouserRobert Jacob
Web 2.0 technologies have introduced increasingly participatory practices to creating content, and museums are becoming interested in the potentials of “Museum 2.0” for reaching and engaging with new audiences. As technological advances are opening up the ways in which museums share information about the objects in their collections, the means by which museums create, handle, process, and transmit knowledge has become more transparent. For this to be done effectively, however, some underlying contradictions must be resolved between museum practices, which privilege the account of the “expert,”
DATE:
TEAM MEMBERS:
Ramesh SrinivasanRobin BoastJonathan FurnerKatherine Becvar
This planning effort, a collaboration of teams at the University of Maryland, Cornell University, Carnegie Mellon University and the Sciencenter of Ithaca, deals with the development and testing of a unique methodology for educating youth in computer programming. Through a mobile robot that is cleverly disguised as a small animal, participants will learn to manipulate the system by physically moving it as well as setting variables via electronic buttons thereby learning programming and design. The eventual use of this system and methodology is in museum exhibits so preliminary survey data will be gathered from various venues that presently use less capable devices. Iterative testing will be done at the Sciencenter in its exhibits.
This planning effort, a collaboration of teams at the University of Maryland, Cornell University, Carnegie Mellon University and the Sciencenter of Ithaca, deals with the development and testing of a unique methodology for educating youth in computer programming. Through a mobile robot that is cleverly disguised as a small animal, participants will learn to manipulate the system by physically moving it as well as setting variables via electronic buttons thereby learning programming and design. The eventual use of this system and methodology is in museum exhibits so preliminary survey data will be gathered from various venues that presently use less capable devices. Iterative testing will be done at the Sciencenter in its exhibits.
TERC Inc. will conduct a one-year proof of concept study that includes the design, development, and research of two prototype science activities for the virtual Blue Mars Science Center located on the Blue Mars 2150 platform developed by Virtual Space Entertainment. Blue Mars is a science fiction-themed virtual world set on Mars far in the future and will be rendered in High Definition, an important incremental step in the development of highly realistic virtual worlds. It is in this virtual world context that the proposed learning activities and research are to be conducted. TERC's research will examine the challenges of learning in virtual environments and which types of tools and interactions can encourage and support collaboration, the results of which will advance both informal and formal learning in virtual worlds. Avatar tracking data, participant observations, interviews, and surveys will be used to study participants. The project has the potential to advance areas of computational visualization systems and cognitive science and will afford an array of learning opportunities using real time data. Millions of visitors to the Blue Mars world will be able to share in an unprecedented range of virtual activities and experiences. It is anticipated that the research will inform the future development of even more advanced immersive interactivity, such as avatar-based models and computationally-oriented interactivity. The study will serve as a basis for both further development of the Blue Mars Science Center and the advancement of research on science learning in virtual worlds. The investigators are interested in continuing to expand as the scientific community evolves in the virtual world. The online world has the potential to become a powerful attractor for the general public to engage in science learning.
DATE:
-
TEAM MEMBERS:
Jodi Asbell-ClarkeTeon EdwardsRichard Childers